Skip to main content
Top
Published in: Neural Computing and Applications 7/2020

06-08-2019 | Original Article

Adaptive neurofuzzy H-infinity control of DC–DC voltage converters

Authors: G. Rigatos, P. Siano, M. Sayed-Mouchaweh

Published in: Neural Computing and Applications | Issue 7/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A novel adaptive neurofuzzy H-infinity control approach to feedback control of DC–DC converters, being used in applications of renewable energy generation, is developed. The form and the parameters of the differential equations that constitute the dynamic model of the controlled system are considered to be unknown, while there is only knowledge about the order of the system. The model of the controlled system undergoes approximate linearization around a temporary operating point which is re-computed at each iteration of the control algorithm. The linearization procedure makes use of Taylor series expansion and the computation of Jacobian matrices. For the approximately linearized model of the DC–DC converter, it is possible to design a stabilizing H-infinity feedback controller, provided that knowledge about the matrices of the linearized state-space description is available. In such a case, the computation of the feedback controller’s gain comes from the solution of an algebraic Riccati equation taking also place at each iteration of the control method. However, since the elements of these matrices are unknown, it is proposed to estimate them with the use of neurofuzzy approximators. Actually, neurofuzzy networks are employed for learning the constituent functions of the system’s dynamic model. Based on these function estimates, the system’s Jacobian matrices are also obtained and this allows the implementation of the H-infinity feedback controller. To assure the stability of the control loop, the learning rate of the neurofuzzy approximators is chosen from the requirement that the first derivative of the system’s Lyapunov function to be always a negative one. The global asymptotic stability and the robustness properties of the control method are proven through Lyapunov stability analysis.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Gopal C, Mohanraj M, Chandramohan P, Chandrasekar P (2013) Renewable energy source water pumping systems—a literature review. Renew Sustain Energy Rev 25:351–370CrossRef Gopal C, Mohanraj M, Chandramohan P, Chandrasekar P (2013) Renewable energy source water pumping systems—a literature review. Renew Sustain Energy Rev 25:351–370CrossRef
2.
go back to reference Lopez-Luque R, Reca J, Martinez J (2015) Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Appl Energy 149:13–23CrossRef Lopez-Luque R, Reca J, Martinez J (2015) Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards. Appl Energy 149:13–23CrossRef
3.
go back to reference Theunisse TAF, Chai J, Sanfelice RG, Heemels WPMH (2015) Robust global stabilization of the DC–DC boost converter via hybrid control. IEEE Trans Circ Syst I Regul Pap 62(4):1052–1061MathSciNetCrossRef Theunisse TAF, Chai J, Sanfelice RG, Heemels WPMH (2015) Robust global stabilization of the DC–DC boost converter via hybrid control. IEEE Trans Circ Syst I Regul Pap 62(4):1052–1061MathSciNetCrossRef
4.
go back to reference Ouachani I, Rabhi A, Tidhaf B, Zouggar S, Elhajjaji A (2013) Optimization and control for a photovoltaic pumping system. In: 2013 International conference on renewable energy research and applications, Madrid, Spain Ouachani I, Rabhi A, Tidhaf B, Zouggar S, Elhajjaji A (2013) Optimization and control for a photovoltaic pumping system. In: 2013 International conference on renewable energy research and applications, Madrid, Spain
5.
go back to reference Mazumder SK, Nayfeh AH, Borojevic D (2002) Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans Power Electron 17(3):428–437CrossRef Mazumder SK, Nayfeh AH, Borojevic D (2002) Robust control of parallel DC–DC buck converters by combining integral-variable-structure and multiple-sliding-surface control schemes. IEEE Trans Power Electron 17(3):428–437CrossRef
6.
go back to reference Fadil HE, Giri F, Haloua M, Ouadi H (2003) Nonlinear and adaptive control of buck power converters. In: Proceedings of the 42nd IEEE conference on decision and control. Maui, Hawaii USA Fadil HE, Giri F, Haloua M, Ouadi H (2003) Nonlinear and adaptive control of buck power converters. In: Proceedings of the 42nd IEEE conference on decision and control. Maui, Hawaii USA
7.
go back to reference Zurita-Bustamante EW, Linares-Flores J, Guzman-Ramirez E, Sira-Ramirez H (2011) A comparison between the GPI and PID controllersfor the stabilization of a DC–DC buck converter: a field programmable gate array implementation. IEEE Trans Ind Electron 58(11):5251–5263CrossRef Zurita-Bustamante EW, Linares-Flores J, Guzman-Ramirez E, Sira-Ramirez H (2011) A comparison between the GPI and PID controllersfor the stabilization of a DC–DC buck converter: a field programmable gate array implementation. IEEE Trans Ind Electron 58(11):5251–5263CrossRef
8.
go back to reference An L, Dah-Chuan Lu D (2015) Design of a single-switch DC/DC converter for a PV-battery-powered pump system with PFM+PWM control. IEEE Trans Ind Electron 62(2):910–921CrossRef An L, Dah-Chuan Lu D (2015) Design of a single-switch DC/DC converter for a PV-battery-powered pump system with PFM+PWM control. IEEE Trans Ind Electron 62(2):910–921CrossRef
9.
go back to reference Andoulssi R, Draou A, Jerbi H, Alghonamy A, Khiari B (2013) Nonlinear control of a photovoltaic water pumping System. Energy Procedia 42:328–336CrossRef Andoulssi R, Draou A, Jerbi H, Alghonamy A, Khiari B (2013) Nonlinear control of a photovoltaic water pumping System. Energy Procedia 42:328–336CrossRef
10.
go back to reference Angulo-Nunez MI, Sira-Ramirez H (1998) Flatness in the passivity based control of DC-to-DC power converters. In: Proceedings of the 37th IEEE conference on decision and control, Tampa, Florida, USA Angulo-Nunez MI, Sira-Ramirez H (1998) Flatness in the passivity based control of DC-to-DC power converters. In: Proceedings of the 37th IEEE conference on decision and control, Tampa, Florida, USA
11.
go back to reference Linares-Flores J, Sira-Ramirez H (2004) DC motor velocity control through a DC-to-DC power converter. In: 43rd IEEE conference on decision and control, Bahamas Linares-Flores J, Sira-Ramirez H (2004) DC motor velocity control through a DC-to-DC power converter. In: 43rd IEEE conference on decision and control, Bahamas
12.
go back to reference Linares-Flores J, Mendez A Hernadez, Garcia-Rodriguez C, Sira-Ramirez H (2014) Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification. IEEE Trans Ind Electron 61(8):4105–4114CrossRef Linares-Flores J, Mendez A Hernadez, Garcia-Rodriguez C, Sira-Ramirez H (2014) Robust nonlinear adaptive control of a “boost” converter via algebraic parameter identification. IEEE Trans Ind Electron 61(8):4105–4114CrossRef
13.
go back to reference Sira-Ramirez H (1999) Flatness and trajectory tracking in sliding mode based regulation of dc-to-ac conversion schemes. In: Proceedings of the 38th conference on decision and control phoenix, Arizona, USA Sira-Ramirez H (1999) Flatness and trajectory tracking in sliding mode based regulation of dc-to-ac conversion schemes. In: Proceedings of the 38th conference on decision and control phoenix, Arizona, USA
14.
go back to reference Silva-Ortigoza R, Hernandez-Guzman VM, Antonio-Cruz M, Munoz-Carrillo D (2015) DC–DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Trans Power Electron 30(2):1076–1084CrossRef Silva-Ortigoza R, Hernandez-Guzman VM, Antonio-Cruz M, Munoz-Carrillo D (2015) DC–DC Buck power converter as a smooth starter for a DC motor based on a hierarchical control. IEEE Trans Power Electron 30(2):1076–1084CrossRef
15.
go back to reference Thounthong P, Pierfederici S (2010) A new control law based on the differential flatness principle for multiphase interleaved DC–DC converter. IEEE Trans Circ Syst II Express Briefs 57(11):903–907 Thounthong P, Pierfederici S (2010) A new control law based on the differential flatness principle for multiphase interleaved DC–DC converter. IEEE Trans Circ Syst II Express Briefs 57(11):903–907
16.
go back to reference Antritter F, Maurer P, Reger J (2006) Flatness-based control of a buck-converter driven DC motor. In: Proceedings 4th IFAC symposium on mechatronic systems 2006. Heidelberg, Germany Antritter F, Maurer P, Reger J (2006) Flatness-based control of a buck-converter driven DC motor. In: Proceedings 4th IFAC symposium on mechatronic systems 2006. Heidelberg, Germany
17.
go back to reference Qin Y, Peng H, Zhou F, Zeng X, Wu J (2015) Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model. J Frankl Inst 352:4309–4338MathSciNetMATHCrossRef Qin Y, Peng H, Zhou F, Zeng X, Wu J (2015) Nonlinear modeling and control approach to magnetic levitation ball system using functional weight RBF network-based state-dependent ARX model. J Frankl Inst 352:4309–4338MathSciNetMATHCrossRef
18.
go back to reference Zhao J (2016) NN-adaptive predictive control for a class of discrete-time nonlinear systems with input-delay. Neurocomputing 173:1832–1838CrossRef Zhao J (2016) NN-adaptive predictive control for a class of discrete-time nonlinear systems with input-delay. Neurocomputing 173:1832–1838CrossRef
19.
go back to reference Yue H, Li J (2012) Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions. IET Control Theory Appl 6:1266–1280MathSciNetCrossRef Yue H, Li J (2012) Output-feedback adaptive fuzzy control for a class of nonlinear time-varying delay systems with unknown control directions. IET Control Theory Appl 6:1266–1280MathSciNetCrossRef
20.
go back to reference Cho YW, Park CW, kim JH, Park M (2005) Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc Control Theory Appl 148(4):273–282CrossRef Cho YW, Park CW, kim JH, Park M (2005) Indirect model reference adaptive fuzzy control of dynamic fuzzy-state space model. IET Proc Control Theory Appl 148(4):273–282CrossRef
21.
go back to reference Huang YS, Zhou DQ, Xiao SP, Ling D (2009) Coordinated deventralized hybrid adaptive output feedback fuzzy control for a class of large-scale nonlinear systems with strong interconnections. IET Control Theory and Appl 3(9):1261–1274MathSciNetCrossRef Huang YS, Zhou DQ, Xiao SP, Ling D (2009) Coordinated deventralized hybrid adaptive output feedback fuzzy control for a class of large-scale nonlinear systems with strong interconnections. IET Control Theory and Appl 3(9):1261–1274MathSciNetCrossRef
23.
go back to reference Ge SS, Wang C (2002) Direct adaptive NN control of a class of nonlinear systems. IEEE Trans Neural Netw 13(1):214–221CrossRef Ge SS, Wang C (2002) Direct adaptive NN control of a class of nonlinear systems. IEEE Trans Neural Netw 13(1):214–221CrossRef
24.
go back to reference Wang LX (1998) A course in fuzzy systems and control. Prentice-Hall, Upper Saddle River Wang LX (1998) A course in fuzzy systems and control. Prentice-Hall, Upper Saddle River
25.
go back to reference Tong S, Li H-X, Chen G (2004) Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans Syst Man Cybern Part B Cybern 34(1):770–775CrossRef Tong S, Li H-X, Chen G (2004) Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems. IEEE Trans Syst Man Cybern Part B Cybern 34(1):770–775CrossRef
26.
go back to reference Li HX, Tong S (2003) A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans Fuzzy Syst 11(1):24–35CrossRef Li HX, Tong S (2003) A hybrid adaptive fuzzy control for a class of nonlinear MIMO systems. IEEE Trans Fuzzy Syst 11(1):24–35CrossRef
27.
28.
go back to reference Chen CS (2009) Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems. Inf Sci 179:2676–2688MATHCrossRef Chen CS (2009) Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems. Inf Sci 179:2676–2688MATHCrossRef
29.
30.
go back to reference Chen CH, Lin CM, Chen TY (2008) Intelligent adaptive control for MIMO uncertain nonlinear systems. Expert Syst Appl 35:865–877CrossRef Chen CH, Lin CM, Chen TY (2008) Intelligent adaptive control for MIMO uncertain nonlinear systems. Expert Syst Appl 35:865–877CrossRef
31.
32.
go back to reference Rudolph J (2003) Flatness based control of distributed parameter systems, examples and computer exercises from various technological domains. Shaker Verlag, Aachen Rudolph J (2003) Flatness based control of distributed parameter systems, examples and computer exercises from various technological domains. Shaker Verlag, Aachen
33.
34.
go back to reference Rigatos GG (2011) Modelling and control for intelligent industrial systems: adaptive algorithms in robotics and industrial engineering. Springer, BerlinMATHCrossRef Rigatos GG (2011) Modelling and control for intelligent industrial systems: adaptive algorithms in robotics and industrial engineering. Springer, BerlinMATHCrossRef
35.
go back to reference Rigatos G (2013) Advanced models of neural networks: nonlinear dynamics and stochasticity in biological neurons. Springer, BerlinMATH Rigatos G (2013) Advanced models of neural networks: nonlinear dynamics and stochasticity in biological neurons. Springer, BerlinMATH
36.
go back to reference Rigatos G (2015) Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems. Springer, BerlinMATHCrossRef Rigatos G (2015) Nonlinear control and filtering using differential flatness approaches: applications to electromechanical systems. Springer, BerlinMATHCrossRef
37.
go back to reference Rigatos G (2016) Intelligent renewable energy systems: modelling and control. Springer, BerlinCrossRef Rigatos G (2016) Intelligent renewable energy systems: modelling and control. Springer, BerlinCrossRef
38.
go back to reference Rigatos G (2017) State-space approaches for modelling and control in financial engineering: systems theory and machine learning methods. Springer, BerlinMATHCrossRef Rigatos G (2017) State-space approaches for modelling and control in financial engineering: systems theory and machine learning methods. Springer, BerlinMATHCrossRef
39.
go back to reference Rigatos G, Siano P (2014) An H-infinity feedback control approach to autonomous robot navigation. In: IEEE IECON 2014. Dallas, Texas Rigatos G, Siano P (2014) An H-infinity feedback control approach to autonomous robot navigation. In: IEEE IECON 2014. Dallas, Texas
40.
go back to reference Rigatos G, Siano P (2015) A New Nonlinear H-infinity Feedback Control Approach to the Problem of Autonomous Robot Navigation. Journal of Intelligent Industrial Systems, Springer 1(3):179–186CrossRef Rigatos G, Siano P (2015) A New Nonlinear H-infinity Feedback Control Approach to the Problem of Autonomous Robot Navigation. Journal of Intelligent Industrial Systems, Springer 1(3):179–186CrossRef
41.
go back to reference Rigatos G, Siano P, Wira P, Profumo F (2015) Nonlinear H-infinity feedback control for asynchronous motors of electric trains. J Intell Ind Syst 1(3):85–98CrossRef Rigatos G, Siano P, Wira P, Profumo F (2015) Nonlinear H-infinity feedback control for asynchronous motors of electric trains. J Intell Ind Syst 1(3):85–98CrossRef
42.
go back to reference Rigatos GG, Tzafestas SG (2007) Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math Comput Model Dyn Syst 13:251–266MathSciNetMATHCrossRef Rigatos GG, Tzafestas SG (2007) Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math Comput Model Dyn Syst 13:251–266MathSciNetMATHCrossRef
44.
go back to reference Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and applications. Prentice-Hall, Upper Saddle RiverMATH Basseville M, Nikiforov I (1993) Detection of abrupt changes: theory and applications. Prentice-Hall, Upper Saddle RiverMATH
45.
go back to reference Kurylowicz A, Jaworska I, Tzafestas SG (1993) Robust stabilizing control: an overview. In: Tzafestas SG (ed) Applied control: current trends and modern methodologies. Marcel Dekker, New York, pp 289–324 Kurylowicz A, Jaworska I, Tzafestas SG (1993) Robust stabilizing control: an overview. In: Tzafestas SG (ed) Applied control: current trends and modern methodologies. Marcel Dekker, New York, pp 289–324
46.
go back to reference Lublin L, Athans M (1995) An experimental comparison of and designs for interferometer testbed. In: Francis B, Tannenbaum A (eds) Lectures notes in control and information sciences: feedback control, nonlinear systems and complexity. Springer, Berlin, pp 150–172MATH Lublin L, Athans M (1995) An experimental comparison of and designs for interferometer testbed. In: Francis B, Tannenbaum A (eds) Lectures notes in control and information sciences: feedback control, nonlinear systems and complexity. Springer, Berlin, pp 150–172MATH
47.
go back to reference Doyle JC, Glover K, Khargonekar PP, Francis BA (1989) State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans Autom Control 34:831–847MATHCrossRef Doyle JC, Glover K, Khargonekar PP, Francis BA (1989) State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans Autom Control 34:831–847MATHCrossRef
48.
go back to reference Zhang WJ, van Lutterwelt CA (2011) Towards a resilient manufacturing system. CIRP Ann Manuf Technol 60:469–472CrossRef Zhang WJ, van Lutterwelt CA (2011) Towards a resilient manufacturing system. CIRP Ann Manuf Technol 60:469–472CrossRef
49.
go back to reference Ouyang PR, Zhang WJ, Gupta MM (2016) An adaptive switching learning control method for trajectory tracking of robotic manipulators. Mechatronics 16:51–61CrossRef Ouyang PR, Zhang WJ, Gupta MM (2016) An adaptive switching learning control method for trajectory tracking of robotic manipulators. Mechatronics 16:51–61CrossRef
50.
go back to reference Gardezi MSH, Hasan A (2018) Machine learning based adaptive predictive horizon in finite control set model predictive control. IEEE Access 6:32392–32400CrossRef Gardezi MSH, Hasan A (2018) Machine learning based adaptive predictive horizon in finite control set model predictive control. IEEE Access 6:32392–32400CrossRef
51.
go back to reference Nizam TK, Chakravarty A, Mahanta C (2017) Design and implementation of a neuro=adaptive backstepping controller for buck converter fed PMDC-motor. Control Eng Pract 58:78–87CrossRef Nizam TK, Chakravarty A, Mahanta C (2017) Design and implementation of a neuro=adaptive backstepping controller for buck converter fed PMDC-motor. Control Eng Pract 58:78–87CrossRef
52.
go back to reference Sharifian A, Sansansara SF, Ghadi MJ, Ghadival S, Li L, Zhang J (2018) Dynamic performance improvement of an ultra-lift Luo DC-DC converter by using a type-2 fuzzy neural network. Comput Electr Eng 63:171–182CrossRef Sharifian A, Sansansara SF, Ghadi MJ, Ghadival S, Li L, Zhang J (2018) Dynamic performance improvement of an ultra-lift Luo DC-DC converter by using a type-2 fuzzy neural network. Comput Electr Eng 63:171–182CrossRef
Metadata
Title
Adaptive neurofuzzy H-infinity control of DC–DC voltage converters
Authors
G. Rigatos
P. Siano
M. Sayed-Mouchaweh
Publication date
06-08-2019
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 7/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-019-04394-4

Other articles of this Issue 7/2020

Neural Computing and Applications 7/2020 Go to the issue

Deep Learning & Neural Computing for Intelligent Sensing and Control

Genetic algorithm combined with BP neural network in hospital drug inventory management system

Deep Learning & Neural Computing for Intelligent Sensing and Control

Prediction of air quality in Shenzhen based on neural network algorithm

Premium Partner