Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

02-06-2015 | Original Article | Issue 3/2017

International Journal of Machine Learning and Cybernetics 3/2017

Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing

Journal:
International Journal of Machine Learning and Cybernetics > Issue 3/2017
Authors:
Meng Meng, Jia Wei, Jiabing Wang, Qianli Ma, Xuan Wang

Abstract

With the rapid growth of high dimensional data, dimensionality reduction is playing a more and more important role in practical data processing and analysing tasks. This paper studies semi-supervised dimensionality reduction using pairwise constraints. In this setting, domain knowledge is given in the form of pairwise constraints, which specifies whether a pair of instances belong to the same class (must-link constraint) or different classes (cannot-link constraint). In this paper, a novel semi-supervised dimensionality reduction method called adaptive semi-supervised dimensionality reduction (ASSDR) is proposed, which can get the optimized low dimensional representation of the original data by adaptively adjusting the weights of the pairwise constraints and simultaneously optimizing the graph construction. Experiments on UCI classification and image recognition show that ASSDR is superior to many existing dimensionality reduction methods.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2017

International Journal of Machine Learning and Cybernetics 3/2017 Go to the issue