Skip to main content
Top
Published in: Progress in Additive Manufacturing 5/2023

20-11-2022 | Review Article

Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects

Authors: Adil Wazeer, Apurba Das, Arijit Sinha, Kazuaki Inaba, Su Ziyi, Amit Karmakar

Published in: Progress in Additive Manufacturing | Issue 5/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Application of additive manufacturing methods is escalating in numerous sectors including the medical field owing to its enhanced productivity, functionality, patient-specific fabrication, and affordability. Additive manufacturing is considered a digital manufacturing technique that is rapidly transforming the medical space in terms of printing distinctive body parts with complex shapes and proposing customized and tailored resolutions to individual patients. In previous times, Additive Manufacturing (AM) is employed as a flexible and profitable technique for fabricating geometrically intricate medical organs, dental implants, and bones. Though patient-specific implants for bone disease, injury, and organ replacement are still a significant challenge for medical practitioners and researchers. In spite of the broad studies which were concluded on the characteristics of AM materials, there is still a necessity for a vigorous understanding of application-specific needs, processes, challenges, and considerations related to these techniques. Thus, the aim of this study is to present a comprehensive review of the most general AM processes, types of materials employed in AM, and applications of various AM techniques in the biomedical field. This study also outlines current limitations and challenges, which inhibit medical sciences to completely benefiting from the advanced AM opportunities, comprising production volume, post-processing, standards compliance, product quality, materials range, and maintenance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zadpoor AA (2017) Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials. Int J Mol Sci 18:1607CrossRef Zadpoor AA (2017) Design for additive bio-manufacturing: from patient-specific medical devices to rationally designed meta-biomaterials. Int J Mol Sci 18:1607CrossRef
2.
go back to reference Hu Q, Sun XZ, Parmenter CDJ, Fay MW, Smith EF, Rance GA, He Y, Zhang F, Liu Y, Irvine D (2017) Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Sci Rep 7:17150CrossRef Hu Q, Sun XZ, Parmenter CDJ, Fay MW, Smith EF, Rance GA, He Y, Zhang F, Liu Y, Irvine D (2017) Additive manufacture of complex 3D Au-containing nanocomposites by simultaneous two-photon polymerisation and photoreduction. Sci Rep 7:17150CrossRef
3.
go back to reference McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC (2017) Fabrication of fillable microparticles and other complex 3D microstructures. Science 357:1138–1142CrossRef McHugh KJ, Nguyen TD, Linehan AR, Yang D, Behrens AM, Rose S, Tochka ZL, Tzeng SY, Norman JJ, Anselmo AC (2017) Fabrication of fillable microparticles and other complex 3D microstructures. Science 357:1138–1142CrossRef
4.
go back to reference ASTM International (2015) ISO/ASTM52900—15 Standard Terminology for Additive Manufacturing—General Principles—Terminology; ASTM International, West Conshohocken PA USA ASTM International (2015) ISO/ASTM52900—15 Standard Terminology for Additive Manufacturing—General Principles—Terminology; ASTM International, West Conshohocken PA USA
5.
go back to reference Gibson I, Rosen DW, Stucker B (2010) Additive Manufacturing Technologies. Springer, Berlin, GermanyCrossRef Gibson I, Rosen DW, Stucker B (2010) Additive Manufacturing Technologies. Springer, Berlin, GermanyCrossRef
6.
go back to reference Hopkinson N, Dickens P (2006) Emerging rapid manufacturing processes Rapid Manufacturing: An Industrial Revolution for the Digital Age. John Wiley & Sons, Hoboken, NJ, USA, pp 55–80 Hopkinson N, Dickens P (2006) Emerging rapid manufacturing processes Rapid Manufacturing: An Industrial Revolution for the Digital Age. John Wiley & Sons, Hoboken, NJ, USA, pp 55–80
7.
go back to reference Giannatsis J, Dedoussis V (2009) Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol 40(1–2):116–127CrossRef Giannatsis J, Dedoussis V (2009) Additive fabrication technologies applied to medicine and health care: a review. Int J Adv Manuf Technol 40(1–2):116–127CrossRef
8.
go back to reference Pettersson A, Salmi M, Vallittu P, Serlo W, Tuomi J, Mäkitie AA (2020) Main clinical use of additive manufacturing (three- dimensional printing) in finland restricted to the head and neck area in 2016–2017. Scand J Surg 109:166–173CrossRef Pettersson A, Salmi M, Vallittu P, Serlo W, Tuomi J, Mäkitie AA (2020) Main clinical use of additive manufacturing (three- dimensional printing) in finland restricted to the head and neck area in 2016–2017. Scand J Surg 109:166–173CrossRef
9.
go back to reference Zadpoor AA, Malda J (2016) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 1:1–11 Zadpoor AA, Malda J (2016) Additive manufacturing of biomaterials, tissues, and organs. Ann Biomed Eng 1:1–11
10.
go back to reference Calignano F, Galati M, Iuliano L, Minetola P (2019) Design of additively manufactured structures for biomedical applications: a review of the additive manufacturing processes applied to the biomedical sector. J Healthc Eng 2019:9748212CrossRef Calignano F, Galati M, Iuliano L, Minetola P (2019) Design of additively manufactured structures for biomedical applications: a review of the additive manufacturing processes applied to the biomedical sector. J Healthc Eng 2019:9748212CrossRef
11.
go back to reference Venne G, Esau G, Bicknell RT et al (2018) 3D printed anatomy specific fixture for consistent glenoid cavity position in shoulder simulator. J Healthc Eng 2018:2572730CrossRef Venne G, Esau G, Bicknell RT et al (2018) 3D printed anatomy specific fixture for consistent glenoid cavity position in shoulder simulator. J Healthc Eng 2018:2572730CrossRef
12.
go back to reference Salmi A, Calignano F, Galati M et al (2018) An integrated design methodology for components produced by laser powder bed fusion (L-PBF) process. Virtual Phys Prototyp 13(3):191–202CrossRef Salmi A, Calignano F, Galati M et al (2018) An integrated design methodology for components produced by laser powder bed fusion (L-PBF) process. Virtual Phys Prototyp 13(3):191–202CrossRef
13.
go back to reference Ballard DH, Mills P, Duszak R, Weisman JA, Rybicki FJ, Woodard PK (2020) Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Acad Radiol 27:1103–1113CrossRef Ballard DH, Mills P, Duszak R, Weisman JA, Rybicki FJ, Woodard PK (2020) Medical 3D printing cost-savings in orthopedic and maxillofacial surgery: cost analysis of operating room time saved with 3D printed anatomic models and surgical guides. Acad Radiol 27:1103–1113CrossRef
14.
go back to reference Mahmoud A, Bennett M (2015) Introducing 3-dimensional printing of a human anatomic pathology specimen: potential benefits for undergraduate and postgraduate education and anatomic pathology practice. Arch Pathol Lab Med 139:1048–1051CrossRef Mahmoud A, Bennett M (2015) Introducing 3-dimensional printing of a human anatomic pathology specimen: potential benefits for undergraduate and postgraduate education and anatomic pathology practice. Arch Pathol Lab Med 139:1048–1051CrossRef
15.
go back to reference Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng 15:115 Tack P, Victor J, Gemmel P, Annemans L (2016) 3D-printing techniques in a medical setting: A systematic literature review. Biomed Eng 15:115
16.
go back to reference Ballard DH, Tappa K, Boyer CJ, Jammalamadaka U, Hemmanur K, Weisman JA, Alexander JS, Mills DK, Woodard PK (2019) Antibiotics in 3D-printed implants, instruments and materials: Benefits, challenges and future directions. J. 3d Print Med 3:83–93CrossRef Ballard DH, Tappa K, Boyer CJ, Jammalamadaka U, Hemmanur K, Weisman JA, Alexander JS, Mills DK, Woodard PK (2019) Antibiotics in 3D-printed implants, instruments and materials: Benefits, challenges and future directions. J. 3d Print Med 3:83–93CrossRef
17.
go back to reference Salmi M, Tuomi J, Paloheimo K, Paloheimo M, Björkstrand R, Mäkitie AA, Mesimäki K, Kontio R (2010) Digital design and rapid manufacturing in orbital wall reconstruction Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping. CRC Press, Boca Raton, FL, USA, pp 339–342 Salmi M, Tuomi J, Paloheimo K, Paloheimo M, Björkstrand R, Mäkitie AA, Mesimäki K, Kontio R (2010) Digital design and rapid manufacturing in orbital wall reconstruction Innovative Developments in Design and Manufacturing—Advanced Research in Virtual and Rapid Prototyping. CRC Press, Boca Raton, FL, USA, pp 339–342
18.
go back to reference Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83:127–141CrossRef Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie YM (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review. Biomaterials 83:127–141CrossRef
19.
go back to reference Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE (2018) 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 34:192–200CrossRef Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE (2018) 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 34:192–200CrossRef
20.
go back to reference Akmal JS, Salmi M, Mäkitie A, Björkstrand R, Partanen J (2018) Implementation of industrial additive manufacturing: Intelligent implants and drug delivery systems. J Funct Biomater 9:41CrossRef Akmal JS, Salmi M, Mäkitie A, Björkstrand R, Partanen J (2018) Implementation of industrial additive manufacturing: Intelligent implants and drug delivery systems. J Funct Biomater 9:41CrossRef
21.
go back to reference Prasad LK, Smyth H (2016) 3D Printing technologies for drug delivery: A review. Drug Dev Ind Pharm 42:1019–1031CrossRef Prasad LK, Smyth H (2016) 3D Printing technologies for drug delivery: A review. Drug Dev Ind Pharm 42:1019–1031CrossRef
22.
go back to reference Salmi M (2021) Additive manufacturing processes in medical applications. Materials 14:191CrossRef Salmi M (2021) Additive manufacturing processes in medical applications. Materials 14:191CrossRef
23.
go back to reference Ibrahim MZ, Sarhan AAD, Yusuf F, Hamdi M, Yusuf F, Hamdi M (2017) Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants: a review article. J. Alloys Compd. pp 636–667 Ibrahim MZ, Sarhan AAD, Yusuf F, Hamdi M, Yusuf F, Hamdi M (2017) Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopedic implants: a review article. J. Alloys Compd. pp 636–667
24.
go back to reference Bansal G, Singh DB, Virk HS, Devrani A, Bhandari A (2019) Microstructural characterization, applications and process study of various additive manufacturing process: a review. Mater Today Proc 26:833–837CrossRef Bansal G, Singh DB, Virk HS, Devrani A, Bhandari A (2019) Microstructural characterization, applications and process study of various additive manufacturing process: a review. Mater Today Proc 26:833–837CrossRef
25.
go back to reference Leon JS, Bharathiraja G, Jayakumar V (2020) Experimental and numerical investigations of optimum process window for friction stir welding using flat faced tool pin. Indian J Sci Technol 13(26):2609–2625CrossRef Leon JS, Bharathiraja G, Jayakumar V (2020) Experimental and numerical investigations of optimum process window for friction stir welding using flat faced tool pin. Indian J Sci Technol 13(26):2609–2625CrossRef
26.
go back to reference Leon JS, Bharathiraja G, Jayakumar V (2020) A Review on Friction Stir Welding in Aluminium Alloys. IOP Conf Ser Mater Sci Eng 954:012007CrossRef Leon JS, Bharathiraja G, Jayakumar V (2020) A Review on Friction Stir Welding in Aluminium Alloys. IOP Conf Ser Mater Sci Eng 954:012007CrossRef
28.
go back to reference Srivastava M, Rathee S, Maheshwari S, Siddiquee AN, Kundra TK (2019) A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques. Crit Rev Solid State Mater Sci 44(5):345–377CrossRef Srivastava M, Rathee S, Maheshwari S, Siddiquee AN, Kundra TK (2019) A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques. Crit Rev Solid State Mater Sci 44(5):345–377CrossRef
29.
go back to reference Khodabakhshi F, Gerlich AP (2018) Potentials and Strategies of Solid- State Additive Friction-Stir Manufacturing Technology: A Critical Review. J. Manuf. Process. pp 77–92. Khodabakhshi F, Gerlich AP (2018) Potentials and Strategies of Solid- State Additive Friction-Stir Manufacturing Technology: A Critical Review. J. Manuf. Process. pp 77–92.
30.
go back to reference Ho YH, Joshi SS, Wu TC, Hung CM, Ho NJ, Dahotre NB (2020) In-Vitro Bio-Corrosion Behavior of Friction Stir Additively Manufactured AZ31B Magnesium Alloy-Hydroxyapatite Composites. Mater. Sci. Eng. C. pp 109. Ho YH, Joshi SS, Wu TC, Hung CM, Ho NJ, Dahotre NB (2020) In-Vitro Bio-Corrosion Behavior of Friction Stir Additively Manufactured AZ31B Magnesium Alloy-Hydroxyapatite Composites. Mater. Sci. Eng. C. pp 109.
31.
go back to reference Bai L, Gong C, Chen X, Sun Y, Zhang J, Cai L, Zhu S, Xie SQ (2019) Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals (Basel) 9(9):1–26CrossRef Bai L, Gong C, Chen X, Sun Y, Zhang J, Cai L, Zhu S, Xie SQ (2019) Additive manufacturing of customized metallic orthopedic implants: materials, structures, and surface modifications. Metals (Basel) 9(9):1–26CrossRef
32.
go back to reference Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction Stir additive manufacturing for high structural performance through microstructural control in an Mg Based WE43 Alloy. Mater Des 65:934–952CrossRef Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction Stir additive manufacturing for high structural performance through microstructural control in an Mg Based WE43 Alloy. Mater Des 65:934–952CrossRef
33.
go back to reference Prashanth KG, Shahabi H.S, Attar H, Srivastava VC, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S (2015) Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing 6:pp.1–5. Prashanth KG, Shahabi H.S, Attar H, Srivastava VC, Ellendt N, Uhlenwinkel V, Eckert J, Scudino S (2015) Production of high strength Al85Nd8Ni5Co2 alloy by selective laser melting. Additive Manufacturing 6:pp.1–5.
34.
go back to reference Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng, A 590:153–160CrossRef Prashanth KG, Scudino S, Klauss HJ, Surreddi KB, Löber L, Wang Z, Chaubey AK, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mater Sci Eng, A 590:153–160CrossRef
35.
go back to reference Zhang LC, Attar H, Calin M, Eckert J (2016) Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications, materials technology: advanced performance materials. Zhang LC, Attar H, Calin M, Eckert J (2016) Review on manufacture by selective laser melting and properties of titanium based materials for biomedical applications, materials technology: advanced performance materials.
36.
go back to reference Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46:1188–1193CrossRef Osakada K, Shiomi M (2006) Flexible manufacturing of metallic products by selective laser melting of powder. Int J Mach Tools Manuf 46:1188–1193CrossRef
37.
go back to reference Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scr Mater 65:21–24CrossRef Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB (2011) Manufacture by selective laser melting and mechanical behavior of a biomedical Ti-24Nb-4Zr-8Sn alloy. Scr Mater 65:21–24CrossRef
39.
go back to reference Hutmacher DW (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362CrossRef Hutmacher DW (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362CrossRef
40.
go back to reference Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18(4):571–577 Sarment DP, Sukovic P, Clinthorne N (2003) Accuracy of implant placement with a stereolithographic surgical guide. Int J Oral Maxillofac Implants 18(4):571–577
41.
go back to reference D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53(3):200–204CrossRef D’Urso PS, Earwaker WJ, Barker TM, Redmond MJ, Thompson RG, Effeney DJ (2000) Custom cranioplasty using stereolithography and acrylic. Br J Plast Surg 53(3):200–204CrossRef
42.
go back to reference Melchels PW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130CrossRef Melchels PW, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130CrossRef
43.
go back to reference Matsuda T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers. 1. Synthesis and photocuring characteristics. Macromolecules 33(3):795–800CrossRef Matsuda T, Mizutani M, Arnold SC (2000) Molecular design of photocurable liquid biodegradable copolymers. 1. Synthesis and photocuring characteristics. Macromolecules 33(3):795–800CrossRef
44.
go back to reference Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(e-caprolactone-cotrimethylene carbonate). II. Computer-aided stereolithographicmicroarchitectural surface photoconstructs. J Biomed Mater Res. 62(3):395–403CrossRef Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(e-caprolactone-cotrimethylene carbonate). II. Computer-aided stereolithographicmicroarchitectural surface photoconstructs. J Biomed Mater Res. 62(3):395–403CrossRef
45.
go back to reference Ronca A, Ambrosio L, Grijpma DW (2013) Preparation of designed poly(D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9:5989–5996CrossRef Ronca A, Ambrosio L, Grijpma DW (2013) Preparation of designed poly(D, L-lactide)/nanosized hydroxyapatite composite structures by stereolithography. Acta Biomater 9:5989–5996CrossRef
46.
go back to reference Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci: Mater Med 20:271–279 Lan PX, Lee JW, Seol YJ, Cho DW (2009) Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J Mater Sci: Mater Med 20:271–279
47.
go back to reference Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51:245–256CrossRef Mazzoli A (2013) Selective laser sintering in biomedical engineering. Med Biol Eng Comput 51:245–256CrossRef
48.
go back to reference Gusarova AV, Laouib T, Froyenc L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46(6):1103–1109CrossRef Gusarova AV, Laouib T, Froyenc L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46(6):1103–1109CrossRef
49.
go back to reference Dupin S, Lame O, Barre`s C, Charmeau JI (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. EurPolym J 48(9):1611–1621 Dupin S, Lame O, Barre`s C, Charmeau JI (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. EurPolym J 48(9):1611–1621
50.
go back to reference Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R (2011) Direct Metal Laser Sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med BiolEngComput 49:1347–1352 Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R (2011) Direct Metal Laser Sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med BiolEngComput 49:1347–1352
51.
go back to reference Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist RadiolSurg 5(4):335–341CrossRef Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist RadiolSurg 5(4):335–341CrossRef
52.
go back to reference Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y et al (2010) Computer- assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral MaxillofacSurg 48(2):105–109CrossRef Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y et al (2010) Computer- assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral MaxillofacSurg 48(2):105–109CrossRef
53.
go back to reference Marafon PG, Mattos BS, Sabóia AC, Noritomi PY (2010) Dimensional accuracy of computer-aided design/computer-assisted manufactured orbital prostheses. Int J Prosthodont 23(3):271–276 Marafon PG, Mattos BS, Sabóia AC, Noritomi PY (2010) Dimensional accuracy of computer-aided design/computer-assisted manufactured orbital prostheses. Int J Prosthodont 23(3):271–276
54.
go back to reference Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 3(3):207–216CrossRef Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 3(3):207–216CrossRef
55.
go back to reference Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral MaxillofacSurg 39(2):182–184CrossRef Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral MaxillofacSurg 39(2):182–184CrossRef
56.
go back to reference Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015CrossRef Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015CrossRef
57.
go back to reference Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100(1):56–60CrossRef Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100(1):56–60CrossRef
58.
go back to reference Wu G, Bi Y, Zhou B, Zemnick C, Han Y, Kong L et al (2009) Computer-aided design and rapid manufacture of an orbital prosthesis. Int J Prosthodont 22(3):293–295 Wu G, Bi Y, Zhou B, Zemnick C, Han Y, Kong L et al (2009) Computer-aided design and rapid manufacture of an orbital prosthesis. Int J Prosthodont 22(3):293–295
59.
go back to reference Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10):1158–1162CrossRef Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10):1158–1162CrossRef
60.
go back to reference Pressel T, Max S, Pfeifer R, Ostermeier S, Windhagen H, Hurschler C (2008) A rapid prototyping model for biomechanical evaluation of pelvic osteotomies. Biomed Tech (Berl) 53(2):65–69CrossRef Pressel T, Max S, Pfeifer R, Ostermeier S, Windhagen H, Hurschler C (2008) A rapid prototyping model for biomechanical evaluation of pelvic osteotomies. Biomed Tech (Berl) 53(2):65–69CrossRef
61.
go back to reference Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G et al (2007) Advanced trans-tibial socket fabrication using selective laser sintering. ProsthetOrthotInt 3:88–100 Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G et al (2007) Advanced trans-tibial socket fabrication using selective laser sintering. ProsthetOrthotInt 3:88–100
62.
go back to reference Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K (2008) Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 48:582–587CrossRef Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K (2008) Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 48:582–587CrossRef
63.
go back to reference Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J CraniofacSurg 14:899–914CrossRef Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J CraniofacSurg 14:899–914CrossRef
64.
go back to reference Suzuki M, Hagiwara A, Ogawa Y, Ono H (2007) Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds. J LaryngolOtol 121:1025–1028CrossRef Suzuki M, Hagiwara A, Ogawa Y, Ono H (2007) Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds. J LaryngolOtol 121:1025–1028CrossRef
65.
go back to reference Wanibuchi M, Ohtaki M, Fukushima T, Friedman AH, Houkin K (2010) Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochir (Wien) 152:1055–1059CrossRef Wanibuchi M, Ohtaki M, Fukushima T, Friedman AH, Houkin K (2010) Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochir (Wien) 152:1055–1059CrossRef
66.
go back to reference Feng Z, Zhao J, Zhou L, Dong Y, Zhao Y (2009) Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect. J Oral MaxillofacSurg 67:2266–2274CrossRef Feng Z, Zhao J, Zhou L, Dong Y, Zhao Y (2009) Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect. J Oral MaxillofacSurg 67:2266–2274CrossRef
67.
go back to reference Lee SJ, Jang KA, Spangberg LSW, Kim E, Jung Y, Lee CY et al (2006) Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 101:668–674CrossRef Lee SJ, Jang KA, Spangberg LSW, Kim E, Jung Y, Lee CY et al (2006) Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 101:668–674CrossRef
68.
go back to reference Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM (2009) A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral MaxillofacSurg 38:187–192CrossRef Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM (2009) A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral MaxillofacSurg 38:187–192CrossRef
69.
go back to reference Sannomiya EK, Silva JV, Brito AA, Saez DM, Angelieri F, DalbenGda S (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 106:e36–e40CrossRef Sannomiya EK, Silva JV, Brito AA, Saez DM, Angelieri F, DalbenGda S (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral RadiolEndod 106:e36–e40CrossRef
72.
go back to reference Lee G, Barlow JW, Fox WC, Aufdermorte TB (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 12–14 August, pp 15–22. Lee G, Barlow JW, Fox WC, Aufdermorte TB (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 12–14 August, pp 15–22.
73.
go back to reference Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 9–11 August, pp 376–380 Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 9–11 August, pp 376–380
74.
go back to reference Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, Rantanen J (2015) Three dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci 104:1099–1107CrossRef Water JJ, Bohr A, Boetker J, Aho J, Sandler N, Nielsen HM, Rantanen J (2015) Three dimensional printing of drug-eluting implants: preparation of an antimicrobial polylactide feedstock material. J Pharm Sci 104:1099–1107CrossRef
75.
go back to reference Sadia M, Sosnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA (2016) Adaption of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513:659–668CrossRef Sadia M, Sosnicka A, Arafat B, Isreb A, Ahmed W, Kelarakis A, Alhnan MA (2016) Adaption of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int J Pharm 513:659–668CrossRef
76.
go back to reference Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185CrossRef Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185CrossRef
77.
go back to reference Zhao F, Li D, Jin Z (2018) Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials 11:288CrossRef Zhao F, Li D, Jin Z (2018) Preliminary investigation of poly-ether-ether-ketone based on fused deposition modeling for medical applications. Materials 11:288CrossRef
78.
go back to reference Espalin D, Arcaute K, Rodriguez D, Medina F, Posner M, Wicker R (2010) Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyp J 16:164–173CrossRef Espalin D, Arcaute K, Rodriguez D, Medina F, Posner M, Wicker R (2010) Fused deposition modeling of patient-specific polymethylmethacrylate implants. Rapid Prototyp J 16:164–173CrossRef
87.
go back to reference Li X, Wang C, Zhang W, Li Y (2010) Fabrication and compressive properties of Ti6Al4Vimplant with honeycomb-like structure for biomedical applications. RapidPrototyp J 16:44–49 Li X, Wang C, Zhang W, Li Y (2010) Fabrication and compressive properties of Ti6Al4Vimplant with honeycomb-like structure for biomedical applications. RapidPrototyp J 16:44–49
88.
go back to reference Nasr EA, Ali K, Al-Ahmari A, Moiduddin K (2014) Digital design and fabrication of customized mandible implant. TSI Press, World Automation CongressCrossRef Nasr EA, Ali K, Al-Ahmari A, Moiduddin K (2014) Digital design and fabrication of customized mandible implant. TSI Press, World Automation CongressCrossRef
89.
go back to reference Heinl P, Muller L, Korner C, Singer RF, Muller FA (2008) Cellular Ti–6Al–4V structureswith interconnected macro porosity for bone implants fabricated by selectiveelectron beam melting. Acta Biomater 4:1536–1544CrossRef Heinl P, Muller L, Korner C, Singer RF, Muller FA (2008) Cellular Ti–6Al–4V structureswith interconnected macro porosity for bone implants fabricated by selectiveelectron beam melting. Acta Biomater 4:1536–1544CrossRef
90.
go back to reference Liu Y, Li S, Hou W, Wang S, Hao Y, Yang R et al (2016) Electron beammelted beta-type Ti–24Nb–4Zr–8Sn porous structures with highstrength-to-modulus ratio. J Mater SciTechnol 32:505–508 Liu Y, Li S, Hou W, Wang S, Hao Y, Yang R et al (2016) Electron beammelted beta-type Ti–24Nb–4Zr–8Sn porous structures with highstrength-to-modulus ratio. J Mater SciTechnol 32:505–508
92.
go back to reference Moran TP, Carrion PE, Lee S, Shamsaei N, Phan N, Warner DH (2022) Hot Isostatic pressing for fatigue critical additively manufactured Ti-6Al-4V. Materials 15(6):2051CrossRef Moran TP, Carrion PE, Lee S, Shamsaei N, Phan N, Warner DH (2022) Hot Isostatic pressing for fatigue critical additively manufactured Ti-6Al-4V. Materials 15(6):2051CrossRef
93.
go back to reference Lario J, Vicente Á, Amigó V (2021) Evolution of the microstructure and mechanical properties of a Ti35Nb2Sn alloy post-processed by hot isostatic pressing for biomedical applications. Metals 11(7):1027CrossRef Lario J, Vicente Á, Amigó V (2021) Evolution of the microstructure and mechanical properties of a Ti35Nb2Sn alloy post-processed by hot isostatic pressing for biomedical applications. Metals 11(7):1027CrossRef
95.
go back to reference Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I et al (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–386CrossRef Hong D, Chou DT, Velikokhatnyi OI, Roy A, Lee B, Swink I et al (2016) Binder-jetting 3D printing and alloy development of new biodegradable Fe-Mn-Ca/Mg alloys. Acta Biomater 45:375–386CrossRef
96.
go back to reference Tai BL, Kao YT, Payne N, Zheng Y, Chen L, Shih AJ (2018) 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med EngPhys 61:61–68CrossRef Tai BL, Kao YT, Payne N, Zheng Y, Chen L, Shih AJ (2018) 3D Printed composite for simulating thermal and mechanical responses of the cortical bone in orthopaedic surgery. Med EngPhys 61:61–68CrossRef
97.
go back to reference Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S et al (2016) A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 158:1213–1219CrossRef Kondo K, Harada N, Masuda H, Sugo N, Terazono S, Okonogi S et al (2016) A neurosurgical simulation of skull base tumors using a 3D printed rapid prototyping model containing mesh structures. Acta Neurochir (Wien) 158:1213–1219CrossRef
98.
go back to reference Jakus AE (2018) An introduction to 3d printing past, present, and future promise. 3D Print Orthopaedic Surg 1. Jakus AE (2018) An introduction to 3d printing past, present, and future promise. 3D Print Orthopaedic Surg 1.
102.
go back to reference Lendlein A, Kelch S (2002) Cover picture: angew. Chem Int Ed 41(12):1973–1973CrossRef Lendlein A, Kelch S (2002) Cover picture: angew. Chem Int Ed 41(12):1973–1973CrossRef
103.
go back to reference Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. Am Chem Soc 54:3819–3833CrossRef Ölander A (1932) An electrochemical investigation of solid cadmium-gold alloys. Am Chem Soc 54:3819–3833CrossRef
104.
go back to reference Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef Buehler WJ, Gilfrich JV, Wiley RC (1963) Effect of low-temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys 34(5):1475–1477CrossRef
105.
go back to reference Jain M, Singh S, Cadeiras M (2013) A case of nitinol allergy causing pericardial tamponade. J Invasive Cardiol 25(9):E180–E182 Jain M, Singh S, Cadeiras M (2013) A case of nitinol allergy causing pericardial tamponade. J Invasive Cardiol 25(9):E180–E182
106.
go back to reference Jetty P, Jayaram S, Veinot J, Pratt M (2013) Superficial femoral artery nitinol stent in a patient with nickel allergy. J Vasc Surg 58(5):1388–1390CrossRef Jetty P, Jayaram S, Veinot J, Pratt M (2013) Superficial femoral artery nitinol stent in a patient with nickel allergy. J Vasc Surg 58(5):1388–1390CrossRef
107.
go back to reference Cederström J, Van Humbeeck J (1995) Relationship between shape memory material properties and applications. Le J de Physique IV 5(C2):335 Cederström J, Van Humbeeck J (1995) Relationship between shape memory material properties and applications. Le J de Physique IV 5(C2):335
108.
go back to reference Yamauchi K (2011) Shape Memory and Superelastic Alloys Technology Application. In: K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (eds). Cambridge, Woodhea, pp. 43–52. Yamauchi K (2011) Shape Memory and Superelastic Alloys Technology Application. In: K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (eds). Cambridge, Woodhea, pp. 43–52.
109.
go back to reference Maruyama T, Kubo H (2011) Shape Memory and Superelastic Alloys Technology Application. In: K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (eds.) (Cambridge: Woodhead), pp. 141–159. Maruyama T, Kubo H (2011) Shape Memory and Superelastic Alloys Technology Application. In: K. Yamauchi, I. Ohkata, K. Tsuchiya, S. Miyazaki (eds.) (Cambridge: Woodhead), pp. 141–159.
110.
go back to reference Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef Elahinia M, Moghaddam NS, Andani MT, Amerinatanzi A, Bimber BA, Hamilton RF (2016) Fabrication of NiTi through additive manufacturing: a review. Prog Mater Sci 83:630–663CrossRef
111.
go back to reference Barbarino S, Saavedra Flores EL, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircrafts. Smart Mater Struct 23:63001CrossRef Barbarino S, Saavedra Flores EL, Ajaj RM, Dayyani I, Friswell MI (2014) A review on shape memory alloys with applications to morphing aircrafts. Smart Mater Struct 23:63001CrossRef
112.
go back to reference Parvizi S, Hasannaeimi V, Saebnoori E, Shahrabi T, Sadrnezhaad SK (2012) Fabrication of porous NiTi alloy via powder metallurgy and its mechanical characterization by shear punch method. Russian J Non-Ferrous Metal 53(2):169–175CrossRef Parvizi S, Hasannaeimi V, Saebnoori E, Shahrabi T, Sadrnezhaad SK (2012) Fabrication of porous NiTi alloy via powder metallurgy and its mechanical characterization by shear punch method. Russian J Non-Ferrous Metal 53(2):169–175CrossRef
113.
go back to reference Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC (2008) Porous NiTi for bone implants: a review. Acta Biomater 4(4):773–782CrossRef Bansiddhi A, Sargeant TD, Stupp SI, Dunand DC (2008) Porous NiTi for bone implants: a review. Acta Biomater 4(4):773–782CrossRef
114.
go back to reference Duerig T, Pelton A, Stöckel DJMS (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160CrossRef Duerig T, Pelton A, Stöckel DJMS (1999) An overview of nitinol medical applications. Mater Sci Eng A 273:149–160CrossRef
115.
go back to reference Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Med Mater Eng 6(4):267–289CrossRef Shabalovskaya SA (1996) On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Med Mater Eng 6(4):267–289CrossRef
116.
go back to reference Rondelli G, Vicentini B (2000) Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite. J Biomed Mater Res 51(1):47–54CrossRef Rondelli G, Vicentini B (2000) Evaluation by electrochemical tests of the passive film stability of equiatomic Ni-Ti alloy also in presence of stress-induced martensite. J Biomed Mater Res 51(1):47–54CrossRef
117.
go back to reference Lecce L (ed) (2014) Shape memory alloy engineering: for aerospace, structural and biomedical applications. Elsevier, Amsterdam Lecce L (ed) (2014) Shape memory alloy engineering: for aerospace, structural and biomedical applications. Elsevier, Amsterdam
118.
go back to reference Song C (2010) History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med Dev J 2:1 Song C (2010) History and current situation of shape memory alloys devices for minimally invasive surgery. Open Med Dev J 2:1
119.
go back to reference Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378:16–23CrossRef Morgan NB (2004) Medical shape memory alloy applications—the market and its products. Mater Sci Eng A 378:16–23CrossRef
120.
go back to reference Petrini L, Migliavacca F (2011). Biomedical applications of shape memory alloys. J Metall. 2011. Petrini L, Migliavacca F (2011). Biomedical applications of shape memory alloys. J Metall. 2011.
121.
go back to reference Cuschieri A (1991) Variable curvature shape-memory spatula for laparoscopic surgery. Surg Endosc 5:179–181CrossRef Cuschieri A (1991) Variable curvature shape-memory spatula for laparoscopic surgery. Surg Endosc 5:179–181CrossRef
122.
go back to reference Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691CrossRef Machado LG, Savi MA (2003) Medical applications of shape memory alloys. Braz J Med Biol Res 36:683–691CrossRef
123.
go back to reference Cekirge S, Weiss JP, Foster RG, Neiman HL, McLean GK (1993) Percutaneous retrieval of foreign bodies: experience with the nitinol Goose Neck snare. J Vasc Interv Radiol 4:805–810CrossRef Cekirge S, Weiss JP, Foster RG, Neiman HL, McLean GK (1993) Percutaneous retrieval of foreign bodies: experience with the nitinol Goose Neck snare. J Vasc Interv Radiol 4:805–810CrossRef
124.
go back to reference Chi FL, Wang SJ, Liu HJ (2007) Auricle reconstruction with a nickel-titanium shape memory alloy as the framework. Laryngoscope 117:248–252CrossRef Chi FL, Wang SJ, Liu HJ (2007) Auricle reconstruction with a nickel-titanium shape memory alloy as the framework. Laryngoscope 117:248–252CrossRef
125.
go back to reference Kasano F, Morimitsu T (1997) Utilization of nickel-titanium shape memory alloy for stapes prosthesis. Auris Nasus Larynx 24:137–142CrossRef Kasano F, Morimitsu T (1997) Utilization of nickel-titanium shape memory alloy for stapes prosthesis. Auris Nasus Larynx 24:137–142CrossRef
126.
go back to reference Pelton AR, Stöckel D, Duerig TW (2000) Medical uses of nitinol. In Materials science forum Trans Tech Publications Ltd 327:63–70CrossRef Pelton AR, Stöckel D, Duerig TW (2000) Medical uses of nitinol. In Materials science forum Trans Tech Publications Ltd 327:63–70CrossRef
127.
go back to reference Idelsohn S, Pena J, Lacroix D, Planell JA, Gil FJ, Arcas A (2004) Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). J Mater Sci - Mater Med 15:541–546CrossRef Idelsohn S, Pena J, Lacroix D, Planell JA, Gil FJ, Arcas A (2004) Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA). J Mater Sci - Mater Med 15:541–546CrossRef
128.
go back to reference Duerig TW, Melton KN, Stöckel DWCM. (2013). Engineering aspects of shape memory alloys. Butterworth-heinemann. pp. 470–476. Duerig TW, Melton KN, Stöckel DWCM. (2013). Engineering aspects of shape memory alloys. Butterworth-heinemann. pp. 470–476.
129.
go back to reference Palmer SN, Greenberg JA (2009) Transcervical sterilization: a comparison of Essure® permanent birth control system and Adiana® permanent contraception system. Rev Obstet Gynecol 2:84 Palmer SN, Greenberg JA (2009) Transcervical sterilization: a comparison of Essure® permanent birth control system and Adiana® permanent contraception system. Rev Obstet Gynecol 2:84
130.
go back to reference Kitamura K, Tobushi H, Yoshimi Y, Sugimoto Y (2009) Evaluation of mechanical characteristics of shape memory alloy for brain spatula. Nihon Kikai Gakkai Ronbunshu A Hen/Trans Jpn Soc Mech Eng Part A 75:439–445 Kitamura K, Tobushi H, Yoshimi Y, Sugimoto Y (2009) Evaluation of mechanical characteristics of shape memory alloy for brain spatula. Nihon Kikai Gakkai Ronbunshu A Hen/Trans Jpn Soc Mech Eng Part A 75:439–445
131.
go back to reference De Bock S, Iannaccone F, De Santis G, De Beule M, Mortier P, Verhegghe B, Segers P (2012) Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 45:1353–1359CrossRef De Bock S, Iannaccone F, De Santis G, De Beule M, Mortier P, Verhegghe B, Segers P (2012) Our capricious vessels: the influence of stent design and vessel geometry on the mechanics of intracranial aneurysm stent deployment. J Biomech 45:1353–1359CrossRef
132.
go back to reference Schuessler A (2001). Laser processing of Nitinol materials. In Proceed. of the Intern. Conf. on Shape Memory and Superelastic Techn pp. 25–32. Schuessler A (2001). Laser processing of Nitinol materials. In Proceed. of the Intern. Conf. on Shape Memory and Superelastic Techn pp. 25–32.
133.
go back to reference Ryklina EP, Khmelevskaya IY, Morozova TV, Prokoshkin SD (2008) Biomedical engineering in design and application of nitinol stents with shape memory effect. Mater Sci Eng A 651:481–482 Ryklina EP, Khmelevskaya IY, Morozova TV, Prokoshkin SD (2008) Biomedical engineering in design and application of nitinol stents with shape memory effect. Mater Sci Eng A 651:481–482
134.
go back to reference Olson JL, Shandas R, Erlanger M (2012) Development of a minimally invasive, injectable, shape memory suture and delivery system. Ann Biomed Eng 40:1520–1529CrossRef Olson JL, Shandas R, Erlanger M (2012) Development of a minimally invasive, injectable, shape memory suture and delivery system. Ann Biomed Eng 40:1520–1529CrossRef
135.
go back to reference Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087CrossRef Chan BQY, Low ZWK, Heng SJW, Chan SY, Owh C, Loh XJ (2016) Recent advances in shape memory soft materials for biomedical applications. ACS Appl Mater Interfaces 8:10070–10087CrossRef
136.
go back to reference Wang S, Ma Z, Zhang T (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11:100–106CrossRef Wang S, Ma Z, Zhang T (2017) Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front Chem Sci Eng 11:100–106CrossRef
137.
go back to reference Small W IV, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213CrossRef Small W IV, Wilson TS, Benett WJ, Loge JM, Maitland DJ (2005) Laser-activated shape memory polymer intravascular thrombectomy device. Opt Express 13:8204–8213CrossRef
138.
go back to reference Li G, Fei G, Liu B, Xia H, Zhao Y (2014) Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound. RSC Adv 4:32701–32709CrossRef Li G, Fei G, Liu B, Xia H, Zhao Y (2014) Shape recovery characteristics for shape memory polymers subjected to high intensity focused ultrasound. RSC Adv 4:32701–32709CrossRef
139.
go back to reference Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable shape memory polymers in medicine. Adv Healthc Mater 6:1700694CrossRef Peterson GI, Dobrynin AV, Becker ML (2017) Biodegradable shape memory polymers in medicine. Adv Healthc Mater 6:1700694CrossRef
140.
go back to reference Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef Lendlein A, Langer R (2002) Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296:1673–1676CrossRef
141.
go back to reference Rodriguez JN, Clubb FJ, Wilson TS, Miller MW, Fossum TW, Hartman J, Maitland DJ (2014) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res, Part A 102:1231–1242CrossRef Rodriguez JN, Clubb FJ, Wilson TS, Miller MW, Fossum TW, Hartman J, Maitland DJ (2014) In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model. J Biomed Mater Res, Part A 102:1231–1242CrossRef
142.
go back to reference Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci - Mater Med 21:2881–2886CrossRef Jung YC, Cho JW (2010) Application of shape memory polyurethane in orthodontic. J Mater Sci - Mater Med 21:2881–2886CrossRef
143.
go back to reference Rom M, Fabia J, Ślusarczyk C, Janicki J, Kasperczyk J, Dobrzyński P (2014) Structural transformation of terpolymer poly (L-lactide-glycolide-trimethylene carbonate) with shape memory effect during the degradation process. Polimery 59:562–568CrossRef Rom M, Fabia J, Ślusarczyk C, Janicki J, Kasperczyk J, Dobrzyński P (2014) Structural transformation of terpolymer poly (L-lactide-glycolide-trimethylene carbonate) with shape memory effect during the degradation process. Polimery 59:562–568CrossRef
144.
go back to reference Baer GM, Wilson TS, Small W IV, Hartman J, Benett WJ, Matthews DL, Maitland DJ (2009) Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J Biomed Mater Res B Appl Biomater 90:421–429CrossRef Baer GM, Wilson TS, Small W IV, Hartman J, Benett WJ, Matthews DL, Maitland DJ (2009) Thermomechanical properties, collapse pressure, and expansion of shape memory polymer neurovascular stent prototypes. J Biomed Mater Res B Appl Biomater 90:421–429CrossRef
145.
go back to reference Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX (2006) Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci - Mater Med 17:611–617CrossRef Meng B, Wang J, Zhu N, Meng QY, Cui FZ, Xu YX (2006) Study of biodegradable and self-expandable PLLA helical biliary stent in vivo and in vitro. J Mater Sci - Mater Med 17:611–617CrossRef
146.
go back to reference Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38:1600628CrossRef Zarek M, Mansour N, Shapira S, Cohn D (2017) 4D printing of shape memory-based personalized endoluminal medical devices. Macromol Rapid Commun 38:1600628CrossRef
147.
go back to reference Ajili SH, Ebrahimi NG, Soleimani M (2009) Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater 5:1519–30CrossRef Ajili SH, Ebrahimi NG, Soleimani M (2009) Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. Acta Biomater 5:1519–30CrossRef
148.
go back to reference Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA (2014) A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater 10:4597–4605CrossRef Zhang D, George OJ, Petersen KM, Jimenez-Vergara AC, Hahn MS, Grunlan MA (2014) A bioactive “self-fitting” shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects. Acta Biomater 10:4597–4605CrossRef
149.
go back to reference Zhang B, DeBartolo JE, Song J (2017) Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water. ACS Appl Mater Interfaces 9:4450–4456CrossRef Zhang B, DeBartolo JE, Song J (2017) Shape recovery with concomitant mechanical strengthening of amphiphilic shape memory polymers in warm water. ACS Appl Mater Interfaces 9:4450–4456CrossRef
150.
go back to reference Salvekar AV, Huang WM, Xiao R, Wong YS, Venkatraman SS, Tay KH, Shen ZX (2017) Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly (ethylene glycol)(PEG) hydrogel. Acc Chem Res 50:141–150CrossRef Salvekar AV, Huang WM, Xiao R, Wong YS, Venkatraman SS, Tay KH, Shen ZX (2017) Water-responsive shape recovery induced buckling in biodegradable photo-cross-linked poly (ethylene glycol)(PEG) hydrogel. Acc Chem Res 50:141–150CrossRef
151.
go back to reference Tang S, Zhang CY, Huang MN, Luo YF, Liang ZQ (2013) Fallopian tube occlusion with a shape memory polymer device: evaluation in a rabbit model. Contraception 87:235–241CrossRef Tang S, Zhang CY, Huang MN, Luo YF, Liang ZQ (2013) Fallopian tube occlusion with a shape memory polymer device: evaluation in a rabbit model. Contraception 87:235–241CrossRef
152.
go back to reference Bao M, Zhou Q, Dong W, Lou X, Zhang Y (2013) Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres. Biomacromol 14:1971–1979CrossRef Bao M, Zhou Q, Dong W, Lou X, Zhang Y (2013) Ultrasound-modulated shape memory and payload release effects in a biodegradable cylindrical rod made of chitosan-functionalized PLGA microspheres. Biomacromol 14:1971–1979CrossRef
153.
go back to reference Maitland DJ, Wilson T, Schumann DL, Baer G (2002) Conference proceedings—lasers and electro-optics society annual meeting. 1:359. Maitland DJ, Wilson T, Schumann DL, Baer G (2002) Conference proceedings—lasers and electro-optics society annual meeting. 1:359.
154.
go back to reference Chen C, Hu J, Huang H, Zhu Y, Qin T (2016) Design of a smart nerve conduit based on a shape-memory polymer. Adv Mater Technol 1:1600015CrossRef Chen C, Hu J, Huang H, Zhu Y, Qin T (2016) Design of a smart nerve conduit based on a shape-memory polymer. Adv Mater Technol 1:1600015CrossRef
155.
go back to reference Sidhu HS, Kumar S (2019) Design and fabrication of prosthetic leg. J Compos Theory 12(7):973–981 Sidhu HS, Kumar S (2019) Design and fabrication of prosthetic leg. J Compos Theory 12(7):973–981
158.
go back to reference Suresh S, Mortensen A (1997) Functionally graded metals and metal ceramic composites: part 2 Thermomechanical behaviour. Int Mater Rev 42:85–101CrossRef Suresh S, Mortensen A (1997) Functionally graded metals and metal ceramic composites: part 2 Thermomechanical behaviour. Int Mater Rev 42:85–101CrossRef
159.
go back to reference Kumar R, Kumar M, Chohan JS (2021) The role of additive manufacturing for biomedical applications: a critical review. J Manuf Process 64:828–850CrossRef Kumar R, Kumar M, Chohan JS (2021) The role of additive manufacturing for biomedical applications: a critical review. J Manuf Process 64:828–850CrossRef
160.
go back to reference Oshkour A, Abu Osman N, Yau Y, Tarlochan F, Wan Abas W (2012) Design of new generation femoral prostheses using functionally graded materials: A finite element analysis. Proc Inst Mech Eng H 227:3–17CrossRef Oshkour A, Abu Osman N, Yau Y, Tarlochan F, Wan Abas W (2012) Design of new generation femoral prostheses using functionally graded materials: A finite element analysis. Proc Inst Mech Eng H 227:3–17CrossRef
161.
go back to reference Oshkour A, Abu Osman N, Davoodi M, Yau Y, Tarlochan F, Wan Abas W, Bayat M (2013) Finite element analysis on longitudinal and radial functionally graded femoral prosthesis. Int J Numer Methods Biomed Eng 29:1412–1427CrossRef Oshkour A, Abu Osman N, Davoodi M, Yau Y, Tarlochan F, Wan Abas W, Bayat M (2013) Finite element analysis on longitudinal and radial functionally graded femoral prosthesis. Int J Numer Methods Biomed Eng 29:1412–1427CrossRef
162.
go back to reference Hedia HS, Shabara MAN, El-Midany TT, Fouda N (2005) A method of material optimization of cementless stem through functionally graded material. Int J Mech Mater Des 1:329–346CrossRef Hedia HS, Shabara MAN, El-Midany TT, Fouda N (2005) A method of material optimization of cementless stem through functionally graded material. Int J Mech Mater Des 1:329–346CrossRef
163.
go back to reference Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Hong TS, Naghibi H (2013) Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater Des 52:441–451CrossRef Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Hong TS, Naghibi H (2013) Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater Des 52:441–451CrossRef
164.
go back to reference Al-Jassir FF, Fouad H, Alothman OY (2013) In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study. Biomed Eng 12:5 Al-Jassir FF, Fouad H, Alothman OY (2013) In vitro assessment of Function Graded (FG) artificial Hip joint stem in terms of bone/cement stresses: 3D Finite Element (FE) study. Biomed Eng 12:5
165.
go back to reference Gabbrielli R, Turner IG, Bowen CR, Wang H, Johnston S, Rosen D, Cheng A, Humayun A, Cohen DJ, Boyan BD et al (2006) Design of a graded cellular structure for an acetabular hip replacement component. Biofabrication 6:45007 Gabbrielli R, Turner IG, Bowen CR, Wang H, Johnston S, Rosen D, Cheng A, Humayun A, Cohen DJ, Boyan BD et al (2006) Design of a graded cellular structure for an acetabular hip replacement component. Biofabrication 6:45007
166.
go back to reference Hazlehurst KB, Wang CJ, Stanford M (2013) The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med Hypotheses 81:1096–1099CrossRef Hazlehurst KB, Wang CJ, Stanford M (2013) The potential application of a Cobalt Chrome Molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med Hypotheses 81:1096–1099CrossRef
167.
go back to reference Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G (2016) Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach. PLoS One 11:0146935CrossRef Boccaccio A, Uva AE, Fiorentino M, Mori G, Monno G (2016) Geometry design optimization of functionally graded scaffolds for bone tissue engineering: A mechanobiological approach. PLoS One 11:0146935CrossRef
168.
go back to reference Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res 34:369–385CrossRef Sing SL, An J, Yeong WY, Wiria FE (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs. J Orthop Res 34:369–385CrossRef
171.
go back to reference Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRef
172.
go back to reference Park SH, Yun BG, Won JY et al (2017) New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope 127:1036–1043CrossRef Park SH, Yun BG, Won JY et al (2017) New application of three-dimensional printing biomaterial in nasal reconstruction. Laryngoscope 127:1036–1043CrossRef
173.
go back to reference Giordano RA, Wu BM, Borland SW et al (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J BiomaterSci 8:63–75CrossRef Giordano RA, Wu BM, Borland SW et al (1996) Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing. J BiomaterSci 8:63–75CrossRef
174.
go back to reference Rengier F, Mehndiratta A, von Tengg-Kobligk H et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist RadiolSurg 5:335–341CrossRef Rengier F, Mehndiratta A, von Tengg-Kobligk H et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist RadiolSurg 5:335–341CrossRef
175.
go back to reference Oberoi G, Nitsch S, Edelmayer M, et al. (2018) 3D printing—encompassing the facets of dentistry. Front BioengBiotechnol 6. Oberoi G, Nitsch S, Edelmayer M, et al. (2018) 3D printing—encompassing the facets of dentistry. Front BioengBiotechnol 6.
176.
go back to reference Dawood A, Marti Marti B, Sauret-Jackson V et al (2015) 3D printing in dentistry. Br Dent J 219:521–529CrossRef Dawood A, Marti Marti B, Sauret-Jackson V et al (2015) 3D printing in dentistry. Br Dent J 219:521–529CrossRef
177.
go back to reference Rosen JE, Size A, Yang Y et al (2015) Artificial hand for minimally invasive surgery: design and testing of initial prototype. SurgEndosc 29:61–67 Rosen JE, Size A, Yang Y et al (2015) Artificial hand for minimally invasive surgery: design and testing of initial prototype. SurgEndosc 29:61–67
178.
go back to reference Vujaklija I, Farina D (2018) 3D printed upper limb prosthetics. Expert Rev Med Dev 15:505–512CrossRef Vujaklija I, Farina D (2018) 3D printed upper limb prosthetics. Expert Rev Med Dev 15:505–512CrossRef
184.
go back to reference Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11CrossRef Gopinathan J, Noh I (2018) Recent trends in bioinks for 3D printing. Biomater Res 22:11CrossRef
185.
go back to reference Derakhshanfar S, Mbeleck R, Xu K et al (2018) 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 3:144–156 Derakhshanfar S, Mbeleck R, Xu K et al (2018) 3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances. Bioact Mater 3:144–156
187.
go back to reference He Y, Yang F, Zhao H et al (2016) Research on the printability of hydrogels in 3D bioprinting. Sci rep 6:29977CrossRef He Y, Yang F, Zhao H et al (2016) Research on the printability of hydrogels in 3D bioprinting. Sci rep 6:29977CrossRef
188.
go back to reference Bode F, da Silva MA, Smith P et al (2013) Hybrid gelation processes in enzymatically gelled gelatin: impact on nanostructure, macroscopic properties and cellular response. Soft Matter 9:6986–6999CrossRef Bode F, da Silva MA, Smith P et al (2013) Hybrid gelation processes in enzymatically gelled gelatin: impact on nanostructure, macroscopic properties and cellular response. Soft Matter 9:6986–6999CrossRef
189.
go back to reference Huettner N, Dargaville TR, Forget A (2018) Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol 36:372–383CrossRef Huettner N, Dargaville TR, Forget A (2018) Discovering cell-adhesion peptides in tissue engineering: beyond RGD. Trends Biotechnol 36:372–383CrossRef
190.
go back to reference Boyer R, Weisch G, Collings EW (1994) Materials properties handbook: titanium alloy. ASM International. ISBN: 13–978–0–87170–481–8. Boyer R, Weisch G, Collings EW (1994) Materials properties handbook: titanium alloy. ASM International. ISBN: 13–978–0–87170–481–8.
191.
go back to reference Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV (2011) Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds bystereolithography. Acta Biomater 7:3850–3856CrossRef Elomaa L, Teixeira S, Hakala R, Korhonen H, Grijpma DW, Seppälä JV (2011) Preparation of poly(ε-caprolactone)-based tissue engineering scaffolds bystereolithography. Acta Biomater 7:3850–3856CrossRef
192.
go back to reference Brach del Prever EM, Bistolfi A, Bracco P, Costa L (2009) UHMWPE for arthroplasty:past or future? J OrthopTraumatol 10:1–8 Brach del Prever EM, Bistolfi A, Bracco P, Costa L (2009) UHMWPE for arthroplasty:past or future? J OrthopTraumatol 10:1–8
193.
go back to reference Rimell JT, Marquis PM (2000) Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53:414–420CrossRef Rimell JT, Marquis PM (2000) Selective laser sintering of ultra-high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53:414–420CrossRef
194.
go back to reference Peltola MJ, Vallittu PK, Vuorinen V, Aho AAJ, Puntala A, Aitasalo KMJ (2012) Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol 269:623–628CrossRef Peltola MJ, Vallittu PK, Vuorinen V, Aho AAJ, Puntala A, Aitasalo KMJ (2012) Novel composite implant in craniofacial bone reconstruction. Eur Arch Otorhinolaryngol 269:623–628CrossRef
195.
go back to reference Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568CrossRef Chocholata P, Kulda V, Babuska V (2019) Fabrication of scaffolds for bone-tissue regeneration. Materials 12:568CrossRef
196.
go back to reference Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschläger M, Kenner L et al (2017) Comparison of cancer cells in 2D vs 3D culture reveals differences inAKT–mTOR–S6K signaling and drug responses. J Cell Sci 130:203–218 Riedl A, Schlederer M, Pudelko K, Stadler M, Walter S, Unterleuthner D, Unger C, Kramer N, Hengstschläger M, Kenner L et al (2017) Comparison of cancer cells in 2D vs 3D culture reveals differences inAKT–mTOR–S6K signaling and drug responses. J Cell Sci 130:203–218
197.
go back to reference Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6:1601118CrossRef Cui H, Nowicki M, Fisher JP, Zhang LG (2017) 3D bioprinting for organ regeneration. Adv Healthc Mater 6:1601118CrossRef
198.
go back to reference Kim Y, Kang K, Yoon S, Kim JS, Park SA, KimWD LSB, Ryu KY, Jeong J, Choi D (2018) Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis 14:1–12CrossRef Kim Y, Kang K, Yoon S, Kim JS, Park SA, KimWD LSB, Ryu KY, Jeong J, Choi D (2018) Prolongation of liver-specific function for primary hepatocytes maintenance in 3D printed architectures. Organogenesis 14:1–12CrossRef
199.
go back to reference Ali M, Yoo JJ, Zahran F, Atala A, Lee SJ (2019) A photo—crosslinkable kidney ECM—derived bioink accelerates renal tissue formation. Adv Healthc Mater 8:1800992CrossRef Ali M, Yoo JJ, Zahran F, Atala A, Lee SJ (2019) A photo—crosslinkable kidney ECM—derived bioink accelerates renal tissue formation. Adv Healthc Mater 8:1800992CrossRef
200.
go back to reference Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuro Report 20:798–803 Lee W, Pinckney J, Lee V, Lee JH, Fischer K, Polio S, Park JK, Yoo SS (2009) Three-dimensional bioprinting of rat embryonic neural cells. Neuro Report 20:798–803
201.
go back to reference Kim JH, Seol Y-J, Ko IK, Kang H-W, Lee YK, Yoo JJ, Atala A, Lee SJ (2018) 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci Rep 8:1–5 Kim JH, Seol Y-J, Ko IK, Kang H-W, Lee YK, Yoo JJ, Atala A, Lee SJ (2018) 3D Bioprinted Human Skeletal Muscle Constructs for Muscle Function Restoration. Sci Rep 8:1–5
202.
go back to reference Reid JA, Mollica PA, Bruno RD, Sachs PC (2018) Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Breast Cancer Res 20:122CrossRef Reid JA, Mollica PA, Bruno RD, Sachs PC (2018) Consistent and reproducible cultures of large-scale 3D mammary epithelial structures using an accessible bioprinting platform. Breast Cancer Res 20:122CrossRef
203.
go back to reference Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59CrossRef Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell’Erba V et al (2016) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59CrossRef
204.
go back to reference Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira F, Gryadunova AA, Koudan EV, Khesuani YD, Êasyanov VA et al (2019) Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med 30:31CrossRef Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira F, Gryadunova AA, Koudan EV, Khesuani YD, Êasyanov VA et al (2019) Viscoll collagen solution as a novel bioink for direct 3D bioprinting. J Mater Sci Mater Med 30:31CrossRef
205.
go back to reference Kazzazi SM, Kranioti EF (2018) Applicability of 3D-dental reconstruction in cervical odontometrics. Am J Phys Anthr 165:370–377CrossRef Kazzazi SM, Kranioti EF (2018) Applicability of 3D-dental reconstruction in cervical odontometrics. Am J Phys Anthr 165:370–377CrossRef
206.
go back to reference Martorelli M, Gerbino S, Giudice M, Ausiello P (2013) A comparison between customized clear and removable orthodontic appliancesmanufactured using RP and CNC techniques. Dent Mater 29:e1–e10CrossRef Martorelli M, Gerbino S, Giudice M, Ausiello P (2013) A comparison between customized clear and removable orthodontic appliancesmanufactured using RP and CNC techniques. Dent Mater 29:e1–e10CrossRef
207.
go back to reference Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA (2017) Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl 32:598–611CrossRef Hixon KR, Melvin AM, Lin AY, Hall AF, Sell SA (2017) Cryogel scaffolds from patient-specific 3D-printed molds for personalized tissue-engineered bone regeneration in pediatric cleft-craniofacial defects. J Biomater Appl 32:598–611CrossRef
208.
go back to reference Haglin JM, Eltorai AE, Gil JA, Marcaccio SE, Botero-Hincapie J, Daniels AH (2016) Patient-Specific Orthopaedic Implants. Orthop Surg 8:417–424CrossRef Haglin JM, Eltorai AE, Gil JA, Marcaccio SE, Botero-Hincapie J, Daniels AH (2016) Patient-Specific Orthopaedic Implants. Orthop Surg 8:417–424CrossRef
209.
go back to reference Chang B, Song W, Han T, Yan J, Li F, Zhao L, Kou H, Zhang Y (2016) Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater 33:311–321CrossRef Chang B, Song W, Han T, Yan J, Li F, Zhao L, Kou H, Zhang Y (2016) Influence of pore size of porous titanium fabricated by vacuum diffusion bonding of titanium meshes on cell penetration and bone ingrowth. Acta Biomater 33:311–321CrossRef
210.
go back to reference Shim JH, Won JY, Park JH, Bae JH, Ahn G, Kim CH, Lim DH, Cho DW, Yun WS, Bae EB et al (2017) Effects of 3D-printed Polycaprolactone/beta-Tricalcium phosphate membranes on guided bone regeneration. Int J Mol Sci 18:899CrossRef Shim JH, Won JY, Park JH, Bae JH, Ahn G, Kim CH, Lim DH, Cho DW, Yun WS, Bae EB et al (2017) Effects of 3D-printed Polycaprolactone/beta-Tricalcium phosphate membranes on guided bone regeneration. Int J Mol Sci 18:899CrossRef
211.
go back to reference Nauth A, Schemitsc E, Norris B, Nollin Z, Watson JT (2018) Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma 32(Suppl. 1):S7–S11CrossRef Nauth A, Schemitsc E, Norris B, Nollin Z, Watson JT (2018) Critical-size bone defects: is there a consensus for diagnosis and treatment? J Orthop Trauma 32(Suppl. 1):S7–S11CrossRef
212.
go back to reference Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C et al (2017) 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135:85–95CrossRef Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C et al (2017) 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135:85–95CrossRef
213.
go back to reference Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2017) 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 5:1690–1698CrossRef Wen Y, Xun S, Haoye M, Baichuan S, Peng C, Xuejian L, Kaihong Z, Xuan Y, Jiang P, Shibi L (2017) 3D printed porous ceramic scaffolds for bone tissue engineering: a review. Biomater Sci 5:1690–1698CrossRef
214.
go back to reference Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet 376:440–448CrossRef Lee CH, Cook JL, Mendelson A, Moioli EK, Yao H, Mao JJ (2010) Regeneration of the articular surface of the rabbit synovial joint by cell homing: A proof of concept study. Lancet 376:440–448CrossRef
215.
go back to reference Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20:1342–1351CrossRef Lee CH, Hajibandeh J, Suzuki T, Fan A, Shang P, Mao JJ (2014) Three-dimensional printed multiphase scaffolds for regeneration of periodontium complex. Tissue Eng Part A 20:1342–1351CrossRef
216.
go back to reference Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA (2018) Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release 269:355–363CrossRef Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA (2018) Channelled tablets: an innovative approach to accelerating drug release from 3D printed tablets. J Control Release 269:355–363CrossRef
217.
go back to reference Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494:643–650CrossRef Khaled SA, Burley JC, Alexander MR, Yang J, Roberts CJ (2015) 3D printing of tablets containing multiple drugs with defined release profiles. Int J Pharm 494:643–650CrossRef
218.
go back to reference Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG (2014) Three-dimensional printing surgical instruments: are we there yet? J Surg Res 189:193–197CrossRef Rankin TM, Giovinco NA, Cucher DJ, Watts G, Hurwitz B, Armstrong DG (2014) Three-dimensional printing surgical instruments: are we there yet? J Surg Res 189:193–197CrossRef
219.
go back to reference Guo F, Dai J, Zhang J, Ma Y, Zhu G, Shen J, Niu G (2017) Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One 12:e0171509CrossRef Guo F, Dai J, Zhang J, Ma Y, Zhu G, Shen J, Niu G (2017) Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One 12:e0171509CrossRef
220.
go back to reference George M, Aroom KR, Hawes HG, Gill BS, Love J (2017) 3D printed surgical instruments: the design and fabrication process. World J Surg 41:314–319CrossRef George M, Aroom KR, Hawes HG, Gill BS, Love J (2017) 3D printed surgical instruments: the design and fabrication process. World J Surg 41:314–319CrossRef
221.
go back to reference Choi J, Kwon O-C, Jo W, Lee HJ, Moon M-W (2015) 4D printing technology: a review. 3D Print Addit Manuf 2:159–67CrossRef Choi J, Kwon O-C, Jo W, Lee HJ, Moon M-W (2015) 4D printing technology: a review. 3D Print Addit Manuf 2:159–67CrossRef
222.
go back to reference Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84:116–121 Tibbits S (2014) 4D printing: multi-material shape change. Archit Des 84:116–121
223.
go back to reference Khare V, Sonkaria S, Lee G-Y, Ahn S-H, Chu W-S (2017) From 3D to 4D printing -design, material and fabrication for multi-functional multi-materials. Int J Precis Eng Manuf Technol 4:291–299CrossRef Khare V, Sonkaria S, Lee G-Y, Ahn S-H, Chu W-S (2017) From 3D to 4D printing -design, material and fabrication for multi-functional multi-materials. Int J Precis Eng Manuf Technol 4:291–299CrossRef
224.
go back to reference Momeni F, Mehdi M, Hassani NS, Liu X, Ni J (2017) A review of 4D printing. MaterDes 122:42–79CrossRef Momeni F, Mehdi M, Hassani NS, Liu X, Ni J (2017) A review of 4D printing. MaterDes 122:42–79CrossRef
225.
go back to reference Choong YYC, Maleksaeedi S, Eng H, Wei J, Su P-C (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225CrossRef Choong YYC, Maleksaeedi S, Eng H, Wei J, Su P-C (2017) 4D printing of high performance shape memory polymer using stereolithography. Mater Des 126:219–225CrossRef
226.
go back to reference Sundaram S, Kim DS, Baldo MA, Hayward RC, Matusik W (2017) 3D-printedself-folding electronics. ACS Appl Mater Interfaces 9:32290–32298CrossRef Sundaram S, Kim DS, Baldo MA, Hayward RC, Matusik W (2017) 3D-printedself-folding electronics. ACS Appl Mater Interfaces 9:32290–32298CrossRef
227.
go back to reference Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Multimaterial 4Dprinting with tailorable shape memory polymers. Sci Rep 6(31110):1–11 Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Multimaterial 4Dprinting with tailorable shape memory polymers. Sci Rep 6(31110):1–11
228.
go back to reference Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S (2014) 4D printing anduniversal transformation. In: Proc 34th ConfAssoc Comp Aid Design Arch p. 539–48. Tibbits S, McKnelly C, Olguin C, Dikovsky D, Hirsch S (2014) 4D printing anduniversal transformation. In: Proc 34th ConfAssoc Comp Aid Design Arch p. 539–48.
229.
go back to reference Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B et al (2015) Active printed materials for complex self-evolving deformations. Sci Rep 4(7422):1–8 Raviv D, Zhao W, McKnelly C, Papadopoulou A, Kadambi A, Shi B et al (2015) Active printed materials for complex self-evolving deformations. Sci Rep 4(7422):1–8
230.
go back to reference Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52CrossRef Villar G, Graham AD, Bayley H (2013) A tissue-like printed material. Science 340:48–52CrossRef
231.
go back to reference Taylor DL, Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093CrossRef Taylor DL, Panhuis M (2016) Self-healing hydrogels. Adv Mater 28:9060–9093CrossRef
232.
go back to reference Ostuzzi F, Rognoli V, Saldien J, Levi M (2015) +TUO project: low-cost 3D printers as helpful tool for small communities with rheumatic diseases. Rapid Prototyp J 21:491–505CrossRef Ostuzzi F, Rognoli V, Saldien J, Levi M (2015) +TUO project: low-cost 3D printers as helpful tool for small communities with rheumatic diseases. Rapid Prototyp J 21:491–505CrossRef
233.
go back to reference Salmi M, Tuomi J, PaloheimoKaija S et al (2012) Patient specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp J 18:209–214CrossRef Salmi M, Tuomi J, PaloheimoKaija S et al (2012) Patient specific reconstruction with 3D modeling and DMLS additive manufacturing. Rapid Prototyp J 18:209–214CrossRef
234.
go back to reference Pucci JU, Christophe BR, Sisti JA, Connolly ES (2017) Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35(5):521–529CrossRef Pucci JU, Christophe BR, Sisti JA, Connolly ES (2017) Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnol Adv 35(5):521–529CrossRef
235.
go back to reference Kochan A (2000) Rapid prototyping gains speed, volume and precision. AssemAutom 20:295–299 Kochan A (2000) Rapid prototyping gains speed, volume and precision. AssemAutom 20:295–299
236.
go back to reference Mallepree T, Bergers D (2009) Accuracy of medical RP models. Rapid Prototyp J 15:325–332CrossRef Mallepree T, Bergers D (2009) Accuracy of medical RP models. Rapid Prototyp J 15:325–332CrossRef
Metadata
Title
Additive manufacturing in biomedical field: a critical review on fabrication method, materials used, applications, challenges, and future prospects
Authors
Adil Wazeer
Apurba Das
Arijit Sinha
Kazuaki Inaba
Su Ziyi
Amit Karmakar
Publication date
20-11-2022
Publisher
Springer International Publishing
Published in
Progress in Additive Manufacturing / Issue 5/2023
Print ISSN: 2363-9512
Electronic ISSN: 2363-9520
DOI
https://doi.org/10.1007/s40964-022-00362-y

Other articles of this Issue 5/2023

Progress in Additive Manufacturing 5/2023 Go to the issue

Premium Partners