Skip to main content
Top
Published in:
Cover of the book

2018 | OriginalPaper | Chapter

Addressing Sustainable Technologies in Geotechnical and Geoenvironmental Engineering

Authors : Krishna R. Reddy, Girish Kumar

Published in: Geotechnics for Natural and Engineered Sustainable Technologies

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Geotechnical and geoenvironmental engineering, which constitutes one of the major tasks of the infrastructure and construction projects, is one of the main contributors to the climate change and other global environmental impacts, due to the use of large amounts of materials and energy. One of the most effective ways to address these challenges is to have the environmental implications integrated into the decisions of a geotechnical/geoenvironmental project. In this regard, the application of life cycle assessment (LCA) has gained major impetus to evaluate the environmental sustainability of such projects. LCA is a comprehensive method for assessing a range of environmental impacts across the full life cycle of a geotechnical and geoenvironmental project, from raw material acquisition, material manufacturing and transport, construction, use and maintenance, and final disposal/recycling. LCA can be challenging due to limited reliable or relevant inventory of data for the assessment. However, it is a systematic and well-accepted tool to develop/design environmentally sustainable geotechnical and geoenvironmental projects. In addition, a triple bottom line assessment which further involves evaluating the economic and social sustainability aspects of the project along with the LCA is essential to holistically evaluate and identify the effectiveness of a geotechnical and geoenvironmental project toward sustainability. This paper presents a review of few studies that demonstrate the application of LCA and triple bottom line assessment to some of the common geotechnical and geoenvironmental projects. The study underscores the importance of LCA in identifying the critical materials and/or operations for the resulting environmental impacts and helps explore different options to improve the net environmental and socioeconomic benefits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Bare, J. C. (2002). TRACI. Journal of Industrial Ecology, 6(3–4), 49–78.CrossRef Bare, J. C. (2002). TRACI. Journal of Industrial Ecology, 6(3–4), 49–78.CrossRef
go back to reference Benoît-Norris, C., Vickery-Niederman, G., Valdivia, S., Franze, J., Traverso, M., Ciroth, A., et al. (2011). Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA. The International Journal of Life Cycle Assessment, 16(7), 682–690.CrossRef Benoît-Norris, C., Vickery-Niederman, G., Valdivia, S., Franze, J., Traverso, M., Ciroth, A., et al. (2011). Introducing the UNEP/SETAC methodological sheets for subcategories of social LCA. The International Journal of Life Cycle Assessment, 16(7), 682–690.CrossRef
go back to reference Berg, R. R., Christopher, B. R., & Samtani, N. C. (2009). Design of mechanically stabilized earth walls and reinforced soil slopes—Volume II. National Highway Institute, Federal Highway Administration, Washington, DC, USA, No. FHWANHI-10-025. Berg, R. R., Christopher, B. R., & Samtani, N. C. (2009). Design of mechanically stabilized earth walls and reinforced soil slopes—Volume II. National Highway Institute, Federal Highway Administration, Washington, DC, USA, No. FHWANHI-10-025.
go back to reference Consoli, N. C., da Silva Lopes, L., Jr., & Heineck, K. S. (2009). Key parameters for the strength control of lime stabilized soils. Journal of Materials in Civil Engineering, 21(5), 210–216. Consoli, N. C., da Silva Lopes, L., Jr., & Heineck, K. S. (2009). Key parameters for the strength control of lime stabilized soils. Journal of Materials in Civil Engineering, 21(5), 210–216.
go back to reference Consoli, N. C., Samaniego, R. A. Q., & Villalba, N. M. K. (2016). Durability, strength, and stiffness of dispersive clay–lime blends. Journal of Materials in Civil Engineering, 28(11), 04016124.CrossRef Consoli, N. C., Samaniego, R. A. Q., & Villalba, N. M. K. (2016). Durability, strength, and stiffness of dispersive clay–lime blends. Journal of Materials in Civil Engineering, 28(11), 04016124.CrossRef
go back to reference da Rocha, C. G., Passuello, A., Consoli, N. C., Samaniego, R. A. Q., & Kanazawa, N. M. (2016). Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco. Journal of Cleaner Production, 139, 309–318.CrossRef da Rocha, C. G., Passuello, A., Consoli, N. C., Samaniego, R. A. Q., & Kanazawa, N. M. (2016). Life cycle assessment for soil stabilization dosages: A study for the Paraguayan Chaco. Journal of Cleaner Production, 139, 309–318.CrossRef
go back to reference Damians, I. P., Bathurst, R. J., Adroguer, E. G., Josa, A., & Lloret, A. (2016a). Environmental assessment of earth retaining wall structures. Environmental Geotechnics. Damians, I. P., Bathurst, R. J., Adroguer, E. G., Josa, A., & Lloret, A. (2016a). Environmental assessment of earth retaining wall structures. Environmental Geotechnics.
go back to reference Damians, I. P., Bathurst, R. J., Adroguer, E. G., Josa, A., & Lloret, A. (2016b). Sustainability assessment of earth-retaining wall structures. Environmental Geotechnics. Damians, I. P., Bathurst, R. J., Adroguer, E. G., Josa, A., & Lloret, A. (2016b). Sustainability assessment of earth-retaining wall structures. Environmental Geotechnics.
go back to reference Egan, D., & Slocombe, B. (2010). Demonstrating environmental benefits of ground improvement. Ground Improvement. Proceedings of the Institution of Civil Engineers, 163(1). Egan, D., & Slocombe, B. (2010). Demonstrating environmental benefits of ground improvement. Ground Improvement. Proceedings of the Institution of Civil Engineers, 163(1).
go back to reference Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., et al. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21.CrossRef Finnveden, G., Hauschild, M. Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., et al. (2009). Recent developments in life cycle assessment. Journal of Environmental Management, 91(1), 1–21.CrossRef
go back to reference Frischknecht, R., Jungbluth, N., Althaus, H. J., Bauer, C., Doka, G., Dones, R., et al. (2007). Implementation of life cycle impact assessment methods. Swiss centre for life cycle inventories, Dübendorf, Switzerland. Ecoinvent Report No. 3, v2.0. http://www.ecoinvent.org/. Accessed May 22, 2017. Frischknecht, R., Jungbluth, N., Althaus, H. J., Bauer, C., Doka, G., Dones, R., et al. (2007). Implementation of life cycle impact assessment methods. Swiss centre for life cycle inventories, Dübendorf, Switzerland. Ecoinvent Report No. 3, v2.0. http://​www.​ecoinvent.​org/​. Accessed May 22, 2017.
go back to reference Giri, R. K., & Reddy, K. R. (2014). LCA and sustainability assessment for selecting deep foundation system for high-rise buildings. In ICSI 2014: Creating infrastructure for a sustainable world (pp. 621–630). Giri, R. K., & Reddy, K. R. (2014). LCA and sustainability assessment for selecting deep foundation system for high-rise buildings. In ICSI 2014: Creating infrastructure for a sustainable world (pp. 621–630).
go back to reference Giri, R. K., & Reddy, K. R. (2015). Sustainability assessment of two alternate earth-retaining structures. In IFCEE 2015 (pp. 2836–2845). Giri, R. K., & Reddy, K. R. (2015). Sustainability assessment of two alternate earth-retaining structures. In IFCEE 2015 (pp. 2836–2845).
go back to reference Goedkoop, M., Heijungs, R., Huijbregts, M., et al. (2008). ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, Report I: Characterisation. Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, The Hague, Netherlands. http://www.lcia-recipe.net/. Accessed on May 22, 2017. Goedkoop, M., Heijungs, R., Huijbregts, M., et al. (2008). ReCiPe 2008: A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, Report I: Characterisation. Ministerie van Volkshuisvesting, Ruimtelijke Ordening en Milieubeheer, The Hague, Netherlands. http://​www.​lcia-recipe.​net/​. Accessed on May 22, 2017.
go back to reference Goldenberg, M., & Reddy, K. R. (2014). Sustainability assessment of excavation and disposal versus in situ stabilization of heavy metal-contaminated soil at a superfund site in Illinois. In Geo-Congress 2014: Geo-characterization and modeling for sustainability (pp. 2245–2254). Goldenberg, M., & Reddy, K. R. (2014). Sustainability assessment of excavation and disposal versus in situ stabilization of heavy metal-contaminated soil at a superfund site in Illinois. In Geo-Congress 2014: Geo-characterization and modeling for sustainability (pp. 2245–2254).
go back to reference Goldenberg, M., & Reddy, K. R. (2017). Sustainability assessment of conventional and alternate landfill cover systems. In Geotechnical frontiers 2017 (pp. 323–332). Goldenberg, M., & Reddy, K. R. (2017). Sustainability assessment of conventional and alternate landfill cover systems. In Geotechnical frontiers 2017 (pp. 323–332).
go back to reference Harbottle, M. J., Al-Tabbaa, A., & Evans, C. W. (2007). A comparison of the technical sustainability of in situ stabilisation/solidification with disposal to landfill. Journal of Hazardous Materials, 141(2), 430–440.CrossRef Harbottle, M. J., Al-Tabbaa, A., & Evans, C. W. (2007). A comparison of the technical sustainability of in situ stabilisation/solidification with disposal to landfill. Journal of Hazardous Materials, 141(2), 430–440.CrossRef
go back to reference Huber-Humer, M., Gebert, J., & Hilger, H. (2008). Biotic systems to mitigate landfill methane emissions. Waste Management and Research, 26(1), 33–46.CrossRef Huber-Humer, M., Gebert, J., & Hilger, H. (2008). Biotic systems to mitigate landfill methane emissions. Waste Management and Research, 26(1), 33–46.CrossRef
go back to reference Inui, T., Chau, C., Soga, K., Nicolson, D., & O’Riordan, N. (2011). Embodied energy and gas emissions of retaining wall structures. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 958–967.CrossRef Inui, T., Chau, C., Soga, K., Nicolson, D., & O’Riordan, N. (2011). Embodied energy and gas emissions of retaining wall structures. Journal of Geotechnical and Geoenvironmental Engineering, 137(10), 958–967.CrossRef
go back to reference Itec (Catalonia Institute of Construction Technology). (2014). Banco estructurado de datos de elementos constructivos (BEDEC). Catalonia institute of construction technology, Barcelona, Spain. http://itec.es/nouBedec.e/. Accessed May 22, 2017 (in Spanish). Itec (Catalonia Institute of Construction Technology). (2014). Banco estructurado de datos de elementos constructivos (BEDEC). Catalonia institute of construction technology, Barcelona, Spain. http://​itec.​es/​nouBedec.​e/​. Accessed May 22, 2017 (in Spanish).
go back to reference ISO. (2006a). ISO 14040 International standard. In: Environmental management—Life cycle assessment—Principles and framework. International organization for standardization, Geneva, Switzerland. ISO. (2006a). ISO 14040 International standard. In: Environmental management—Life cycle assessment—Principles and framework. International organization for standardization, Geneva, Switzerland.
go back to reference ISO. (2006b). ISO 14044 International standard. In: Environmental management—Life cycle assessment—Requirements and guidelines. International organization for tandardization, Geneva, Switzerland. ISO. (2006b). ISO 14044 International standard. In: Environmental management—Life cycle assessment—Requirements and guidelines. International organization for tandardization, Geneva, Switzerland.
go back to reference Jefferson, I., Gaterell, M., Thomas, A. M., & Serridge, C. J. (2010). Emissions assessment related to vibro stone columns. Proceedings of the Institution of Civil Engineers-Ground Improvement, 163(1), 71–77.CrossRef Jefferson, I., Gaterell, M., Thomas, A. M., & Serridge, C. J. (2010). Emissions assessment related to vibro stone columns. Proceedings of the Institution of Civil Engineers-Ground Improvement, 163(1), 71–77.CrossRef
go back to reference Jones, C. J. F. P. (1996). Earth reinforcement and soil structures. London, UK: Thomas Telford.CrossRef Jones, C. J. F. P. (1996). Earth reinforcement and soil structures. London, UK: Thomas Telford.CrossRef
go back to reference Josa A, San José T and Cuadrado J (2008) El caso de la EHE. In Jornada sobre sostenibilidad en la tecnología del hormigón: MIVES, una Herramienta de Apoyo a la Toma de Decisiones (pp. 84–95). Barcelona, Spain (in Spanish). Josa A, San José T and Cuadrado J (2008) El caso de la EHE. In Jornada sobre sostenibilidad en la tecnología del hormigón: MIVES, una Herramienta de Apoyo a la Toma de Decisiones (pp. 84–95). Barcelona, Spain (in Spanish).
go back to reference Khan, A. J., & Sikder, M. (2004). Design basis and economic aspects of different types of retaining walls. Journal of Civil Engineering (IEB), 32(1), 17–34. Khan, A. J., & Sikder, M. (2004). Design basis and economic aspects of different types of retaining walls. Journal of Civil Engineering (IEB), 32(1), 17–34.
go back to reference Koerner, R. M., & Soong, T. Y. (2001). Geosynthetic reinforced segmental retaining walls. Geotextiles and Geomembranes, 19(6), 359–386.CrossRef Koerner, R. M., & Soong, T. Y. (2001). Geosynthetic reinforced segmental retaining walls. Geotextiles and Geomembranes, 19(6), 359–386.CrossRef
go back to reference Lee, M., & Basu, D. (2015). Sustainability assessment of mechanically stabilized earth walls. In CD Proceedings of 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina (pp. 830–837). IOS, Amsterdam, Netherlands. Lee, M., & Basu, D. (2015). Sustainability assessment of mechanically stabilized earth walls. In CD Proceedings of 15th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Buenos Aires, Argentina (pp. 830–837). IOS, Amsterdam, Netherlands.
go back to reference Raymond, A. J., Pinkse, M. A., Kendall, A., & DeJong, J. T. (2017). Life cycle assessment of ground improvement alternatives for the Treasure island, California, redevelopment. In Geotechnical frontiers 2017 (pp. 345–354). Raymond, A. J., Pinkse, M. A., Kendall, A., & DeJong, J. T. (2017). Life cycle assessment of ground improvement alternatives for the Treasure island, California, redevelopment. In Geotechnical frontiers 2017 (pp. 345–354).
go back to reference Reddy, K. R., & Giri, R. K. (2015). Assessing sustainability of ground improvement methods: quantitative triple bottom line framework and case study. In Infrastructure development for environmental conservation and sustenance 28–30 October, 2015 (Vol. 35). Reddy, K. R., & Giri, R. K. (2015). Assessing sustainability of ground improvement methods: quantitative triple bottom line framework and case study. In Infrastructure development for environmental conservation and sustenance 28–30 October, 2015 (Vol. 35).
go back to reference Sadasivam, B. Y., & Reddy, K. R. (2014). Sustainability assessment of Subtitle D cover versus biocover for methane oxidation at municipal solid waste landfills. In Geo-congress 2014: Geo-characterization and modeling for sustainability (pp. 3807–3816). Sadasivam, B. Y., & Reddy, K. R. (2014). Sustainability assessment of Subtitle D cover versus biocover for methane oxidation at municipal solid waste landfills. In Geo-congress 2014: Geo-characterization and modeling for sustainability (pp. 3807–3816).
go back to reference Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. Wiley. Sharma, H. D., & Reddy, K. R. (2004). Geoenvironmental engineering: Site remediation, waste containment, and emerging waste management technologies. Wiley.
go back to reference Shillaber, C. M., Mitchell, J. K., & Dove, J. E. (2015a). Energy and carbon assessment of ground improvement works. I: Definitions and background. Journal of Geotechnical and Geoenvironmental Engineering, 142(3), 04015083.CrossRef Shillaber, C. M., Mitchell, J. K., & Dove, J. E. (2015a). Energy and carbon assessment of ground improvement works. I: Definitions and background. Journal of Geotechnical and Geoenvironmental Engineering, 142(3), 04015083.CrossRef
go back to reference Shillaber, C. M., Mitchell, J. K., & Dove, J. E. (2015b). Energy and carbon assessment of ground improvement works. II: working model and example. Journal of Geotechnical and Geoenvironmental Engineering, 142(3), 04015084.CrossRef Shillaber, C. M., Mitchell, J. K., & Dove, J. E. (2015b). Energy and carbon assessment of ground improvement works. II: working model and example. Journal of Geotechnical and Geoenvironmental Engineering, 142(3), 04015084.CrossRef
go back to reference Soga, K., Chau, C., Nicholson, D., & Pantelidou, H. (2011). Embodied energy: Soil retaining geosystems. KSCE Journal of Civil Engineering, 15(4), 739.CrossRef Soga, K., Chau, C., Nicholson, D., & Pantelidou, H. (2011). Embodied energy: Soil retaining geosystems. KSCE Journal of Civil Engineering, 15(4), 739.CrossRef
go back to reference Tanyu, B. F., Sabatini, P. J., & Berg, R. R. (2008). Earth retaining structures. US department of transportation, federal highway administration, Washington, DC, USA, FHWA-NHI-7-071. Tanyu, B. F., Sabatini, P. J., & Berg, R. R. (2008). Earth retaining structures. US department of transportation, federal highway administration, Washington, DC, USA, FHWA-NHI-7-071.
go back to reference UN. (1987). World commission on environment and development. In Our common future (p. 27). Oxford: Oxford University Press. UN. (1987). World commission on environment and development. In Our common future (p. 27). Oxford: Oxford University Press.
go back to reference USEPA. (2011). Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2010. EPA-530-F-11-005, Washington, DC. USEPA. (2011). Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2010. EPA-530-F-11-005, Washington, DC.
Metadata
Title
Addressing Sustainable Technologies in Geotechnical and Geoenvironmental Engineering
Authors
Krishna R. Reddy
Girish Kumar
Copyright Year
2018
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7721-0_1