Skip to main content
Top

2017 | OriginalPaper | Chapter

5. Adiabatic, Born-Oppenheimer, and Non-adiabatic Approaches

Author : Monika Stanke

Published in: Handbook of Computational Chemistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A detailed derivation of the adiabatic approximation and the Born-Oppenheimer approximation is presented, the difference between these two approximations is discussed and the circumstances under which the adiabatic approximation collapses are discussed. It is shown that the solution of the Schrödinger equation in the adiabatic approximation can be divided into one representing the motion of electrons in the field of fixed nuclei and another one representing the motion of nuclei in the potential generated by the presence of the electrons. The shapes of the potential energy curves generated by the electrons and the motion of the nuclei in these potentials are also analyzed. Finally, the state-of-the-art highly accurate calculations for diatomic molecules performed without the use of the Born-Oppenheimer approximation is presented.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
Precisely, the BO and adiabatic approximations are based on the difference of the time scales of movements of the nuclei and the electrons. For example, in some weakly bound molecular anions, the excess electron is very weakly bound (e.g., in the water anion). Such an electron moves at a speed comparable to the oscillating motion of atomic nuclei. A complete description of the dynamics of such an anion in the framework of the adiabatic approximation is doomed to failure. The failure can be attributed to the fact that the electron may be unbound for some large areas of the configuration space of the nuclei. In these areas the electronic wave function is not square integrable and the adiabatic corrections are divergent.
 
2
We use the most common definition of the new coordinates. Internal coordinates may be defined in many different ways, see, e.g., Piela (2007).
 
3
“Frolov’s calculations showed that when one mass increased without limit (the atomic case), any discrete spectrum persisted, but when two masses were allowed to increase without limit (the molecular cause), the Hamiltonian ceased to be well defined, and this failure led to what he called adiabatic divergence in attempts to compute discrete eigenstates of (21). This divergence is discussed in some mathematical detail in the Appendix to Frolov (1999). It does not arise from the choice of a translationally invariant form for the electronic Hamiltonian; rather it is due to the lack of any kinetic energy term to dominate the Coulomb potential. Thus it really is essential to characterize the spectrum of H elec to see whether the traditional approach can be validated.” (Sutcliffe 2003)
 
4
For the sake of simplicity, we denote ψ k el(r; R) ≡ ψ k el and χ k (R) ≡ χ k .
 
5
As a result of simple transformations:
 
6
More inventive faculty trying to explain to students the BO approximation takes an example of a cow (symbolizes the nucleus) and flies flying around it (electrons). Flies almost immediately adapt to the current position of the cow, just because they are lighter and move faster. Therefore, the cow only sees a cloud of flies, while the flies only see a static cow.
 
7
In fact, there exist rovibrational states, e.g., in the helium dimer, which cannot be properly described by the model of a harmonic oscillator.
 
8
This model works well for molecules like NH3, CH3Cl, C6H6. In a general case the asymmetric top model should be used (see Haken and Wolf 2004 for details).
 
9
Crossing the states of the same symmetry is possible if you work within the adiabatic approximation.
 
10
From now on the symbol “tot” will be used to denote the sum of the total nonrelativistic energy and the corrections up to the certain order in terms of the hyperfine constant α.
 
11
Optimal values of these parameters in the basis functions (126) and (127) are determined using the gradient method.
 
12
Unfortunately in the results of Wolniewicz, the values for the v = 22 are missing.
 
Literature
go back to reference Bethe, H. A., & Salpeter, E. E. (1957). Quantum mechanics of one- and two-electron systems. Berlin: Springer.CrossRef Bethe, H. A., & Salpeter, E. E. (1957). Quantum mechanics of one- and two-electron systems. Berlin: Springer.CrossRef
go back to reference Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln (On the quantum theory of molecules). Annalen der Physik, 84, 457–484.CrossRef Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln (On the quantum theory of molecules). Annalen der Physik, 84, 457–484.CrossRef
go back to reference Bubin, S., Leonarski, F., Stanke, M., & Adamowicz, L. (2009). Charge asymmetry in pure vibrational states of the HD molecule. The Journal of Chemical Physics, 130, 124120.CrossRef Bubin, S., Leonarski, F., Stanke, M., & Adamowicz, L. (2009). Charge asymmetry in pure vibrational states of the HD molecule. The Journal of Chemical Physics, 130, 124120.CrossRef
go back to reference Cafiero, M., & Adamowicz, L. (2002). Nonadiabatic calculations of the dipole moments of LiH and LiD. Physical Review Letters, 88, 33002.CrossRef Cafiero, M., & Adamowicz, L. (2002). Nonadiabatic calculations of the dipole moments of LiH and LiD. Physical Review Letters, 88, 33002.CrossRef
go back to reference Dalgarno, A., & McCarroll, R. (1956). Adiabatic coupling between electronic and nuclear motion in molecules. Proceedings of the Royal Society (London), A237, 383.CrossRef Dalgarno, A., & McCarroll, R. (1956). Adiabatic coupling between electronic and nuclear motion in molecules. Proceedings of the Royal Society (London), A237, 383.CrossRef
go back to reference Davydov, A. S. (1965). Quantum mechanics. Oxford: Pergamon Press. Davydov, A. S. (1965). Quantum mechanics. Oxford: Pergamon Press.
go back to reference Davydov, A. S. (1976). Quantum mechanics (2nd ed.). Oxford: Pergamon Pr. Davydov, A. S. (1976). Quantum mechanics (2nd ed.). Oxford: Pergamon Pr.
go back to reference Demtröder, W. (2010). Atoms, molecules and photons: An introduction to atomic-, molecular- and quantum physics (2nd ed., 2010 ed.). Berlin: Springer, Berlin (January 19, 2011). Demtröder, W. (2010). Atoms, molecules and photons: An introduction to atomic-, molecular- and quantum physics (2nd ed., 2010 ed.). Berlin: Springer, Berlin (January 19, 2011).
go back to reference Frolov, A. M. (1999). Bound-state calculations of Coulomb three-body systems. Physical Review A, 59, 4270.CrossRef Frolov, A. M. (1999). Bound-state calculations of Coulomb three-body systems. Physical Review A, 59, 4270.CrossRef
go back to reference Haken, H., & Wolf, H. C. (2010). Molecular physics and elements of quantum chemistry (2nd Edn., 2004 edition). Berlin: Springer. Haken, H., & Wolf, H. C. (2010). Molecular physics and elements of quantum chemistry (2nd Edn., 2004 edition). Berlin: Springer.
go back to reference Handy, N. C., & Lee, A. M. (1986). The adiabatic approximation. Chemical Physics Letters, 252, 425–430.CrossRef Handy, N. C., & Lee, A. M. (1986). The adiabatic approximation. Chemical Physics Letters, 252, 425–430.CrossRef
go back to reference Herzberg, G. (1951). Spectra of diatomic molecules (2nd ed.). D. Van Nostrand, New York. Herzberg, G. (1951). Spectra of diatomic molecules (2nd ed.). D. Van Nostrand, New York.
go back to reference Howells, M. H., & Kennedy, R. A. (1990). Relativistic corrections for the ground and first excited states of H2 +, HD+ and D2 +. Journal of the Chemical Society Faraday Transactions, 86, 3495.CrossRef Howells, M. H., & Kennedy, R. A. (1990). Relativistic corrections for the ground and first excited states of H2 +, HD+ and D2 +. Journal of the Chemical Society Faraday Transactions, 86, 3495.CrossRef
go back to reference Hulburt, H. M., & Hirschfelder, J. O. (1941). Potential energy functions for diatomic molecules. The Journal of Chemical Physics, 9, 61.CrossRef Hulburt, H. M., & Hirschfelder, J. O. (1941). Potential energy functions for diatomic molecules. The Journal of Chemical Physics, 9, 61.CrossRef
go back to reference Jahn, H. A., & Teller, E. (1937). Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proceedings of the Royal Society of London Series A, 161, 220. Jahn, H. A., & Teller, E. (1937). Stability of polyatomic molecules in degenerate electronic states. I. Orbital degeneracy. Proceedings of the Royal Society of London Series A, 161, 220.
go back to reference Kinghorn, D. B., & Adamowicz, L. (1997). The Journal of Chemical Physics, 106, 4589.CrossRef Kinghorn, D. B., & Adamowicz, L. (1997). The Journal of Chemical Physics, 106, 4589.CrossRef
go back to reference Kołos, W., & Wolniewicz, L. (1963). Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Reviews of Modern Physics, 35, 473.CrossRef Kołos, W., & Wolniewicz, L. (1963). Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Reviews of Modern Physics, 35, 473.CrossRef
go back to reference Kołos, W. (1970). Adiabatic approximation and its accuracy. Advanced in Quantum Chemistry, 5, 99–133.CrossRef Kołos, W. (1970). Adiabatic approximation and its accuracy. Advanced in Quantum Chemistry, 5, 99–133.CrossRef
go back to reference Kolos, W., & Sadlej, J. (1998). Atom i czasteczka (in Polish). Warszawa: WNT Kolos, W., & Sadlej, J. (1998). Atom i czasteczka (in Polish). Warszawa: WNT
go back to reference Krȩglewski, M. (1979). Zadania z chemii kwantowej, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu. Krȩglewski, M. (1979). Zadania z chemii kwantowej, Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu.
go back to reference Landau, L. D., & Lifschitz, E. M. (1981). Quantum mechanics – Non relativistic theory (Course of theoretical physics, Vol. 3, 3rd ed.). Oxford: Pergamon Press. Butterworth-Heinemann. Landau, L. D., & Lifschitz, E. M. (1981). Quantum mechanics – Non relativistic theory (Course of theoretical physics, Vol. 3, 3rd ed.). Oxford: Pergamon Press. Butterworth-Heinemann.
go back to reference Pachucki, K., & Grotch, H. (1995). Pure recoil corrections to hydrogen energy levels. Physical Review A, 51, 1854.CrossRef Pachucki, K., & Grotch, H. (1995). Pure recoil corrections to hydrogen energy levels. Physical Review A, 51, 1854.CrossRef
go back to reference Pavanello, M., Adamowicz, L., Alijah, A., Zobov, N. F., Mizus, I. I., Polyansky, O. L., Tennyson, J., Szidarovszky, T., Császár, A. G., Berg, M., Petrignani, A., & Wolf, A. (2012). Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range. Physical Review Letters, 108, 023002.CrossRef Pavanello, M., Adamowicz, L., Alijah, A., Zobov, N. F., Mizus, I. I., Polyansky, O. L., Tennyson, J., Szidarovszky, T., Császár, A. G., Berg, M., Petrignani, A., & Wolf, A. (2012). Precision measurements and computations of transition energies in rotationally cold triatomic hydrogen ions up to the midvisible spectral range. Physical Review Letters, 108, 023002.CrossRef
go back to reference Piela, L. (2007). Ideas of quantum chemistry (1st ed.). Amsterdam: Elsevier Science., Amsterdam. Piela, L. (2007). Ideas of quantum chemistry (1st ed.). Amsterdam: Elsevier Science., Amsterdam.
go back to reference Ruch, E., & Schönhofer, A. (1965). Ein Beweis des Jahn-Teller-Theorems mit Hilfe eines Satzes über die Induktion von Darstellungen endlicher Gruppen. Theoretica Chimica Acta, 3, 291–304.CrossRef Ruch, E., & Schönhofer, A. (1965). Ein Beweis des Jahn-Teller-Theorems mit Hilfe eines Satzes über die Induktion von Darstellungen endlicher Gruppen. Theoretica Chimica Acta, 3, 291–304.CrossRef
go back to reference Stanke, M., & Adamowicz, L. (2013). Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed. The Journal of Physical Chemistry A, 117 (39), 10129–10137.CrossRef Stanke, M., & Adamowicz, L. (2013). Molecular relativistic corrections determined in the framework where the Born-Oppenheimer approximation is not assumed. The Journal of Physical Chemistry A, 117 (39), 10129–10137.CrossRef
go back to reference Stanke, M., Kȩdziera, D., Molski, M., Bubin, S., Barysz, M., & Adamowicz, L. (2006). Convergence of experiment and theory on the pure vibrational spectrum of HeH+. Physical Review Letters, 96, 233002.CrossRef Stanke, M., Kȩdziera, D., Molski, M., Bubin, S., Barysz, M., & Adamowicz, L. (2006). Convergence of experiment and theory on the pure vibrational spectrum of HeH+. Physical Review Letters, 96, 233002.CrossRef
go back to reference Stanke, M., Kȩdziera, D., Bubin, S., & Adamowicz, L. (2007a). Lowest excitation energy of9Be. Physical Review Letters, 99, 043001.CrossRef Stanke, M., Kȩdziera, D., Bubin, S., & Adamowicz, L. (2007a). Lowest excitation energy of9Be. Physical Review Letters, 99, 043001.CrossRef
go back to reference Stanke, M., Kȩdziera, D., Bubin, S., & Adamowicz, L. (2007b). Ionization potential of9Be calculated including nuclear motion and relativistic corrections. Physical Review A, 75, 052510.CrossRef Stanke, M., Kȩdziera, D., Bubin, S., & Adamowicz, L. (2007b). Ionization potential of9Be calculated including nuclear motion and relativistic corrections. Physical Review A, 75, 052510.CrossRef
go back to reference Stanke, M., Kȩdziera, D., Bubin, S., & Adamowicz, L. (2008). Complete α 2 relativistic corrections to the pure vibrational non-Born-Oppenheimer energies of HeH+. Physical Review A, 77, 022506.CrossRef Stanke, M., Kȩdziera, D., Bubin, S., & Adamowicz, L. (2008). Complete α 2 relativistic corrections to the pure vibrational non-Born-Oppenheimer energies of HeH+. Physical Review A, 77, 022506.CrossRef
go back to reference Stanke, M., Bubin, S., & Adamowicz, L. (2009a). Fundamental vibrational transitions of the3He4He+ and7LiH+ ions calculated without assuming the Born-Oppenheimer approximation and with leading relativistic corrections. Physical Review A, 79, 060501(R). Stanke, M., Bubin, S., & Adamowicz, L. (2009a). Fundamental vibrational transitions of the3He4He+ and7LiH+ ions calculated without assuming the Born-Oppenheimer approximation and with leading relativistic corrections. Physical Review A, 79, 060501(R).
go back to reference Stanke, M., Komasa, J., Bubin, S., & Adamowicz, L. (2009b). Five lowest1S states of the Be atom calculated with a finite-nuclear-mass approach and with relativistic and QED corrections. Physical Review A, 80, 022514.CrossRef Stanke, M., Komasa, J., Bubin, S., & Adamowicz, L. (2009b). Five lowest1S states of the Be atom calculated with a finite-nuclear-mass approach and with relativistic and QED corrections. Physical Review A, 80, 022514.CrossRef
go back to reference Sutcliffe, B. T. (2003). Approximate separation of electronic and nuclear motion, Part 6. In S. Wilson, P. F. Bernath, & R. McWeeny (Eds.), Handbook of molecular physics and quantum chemistry (Vol. 1, p. 475). Chichester: Wiley. Sutcliffe, B. T. (2003). Approximate separation of electronic and nuclear motion, Part 6. In S. Wilson, P. F. Bernath, & R. McWeeny (Eds.), Handbook of molecular physics and quantum chemistry (Vol. 1, p. 475). Chichester: Wiley.
go back to reference Wolniewicz, L. (2011). Private consultations. Wolniewicz, L. (2011). Private consultations.
go back to reference Wolniewicz, L. (1995). Nonadiabatic energies of the ground state of the hydrogen molecule. The Journal of Chemical Physics, 103, 1792.CrossRef Wolniewicz, L. (1995). Nonadiabatic energies of the ground state of the hydrogen molecule. The Journal of Chemical Physics, 103, 1792.CrossRef
go back to reference Wolniewicz, L., & Orlikowski, T. (1991). The 1sσ g and 2pσ u states of the H2 +, D2 + and HD+ ions. Molecular Physics, 74, 103–111.CrossRef Wolniewicz, L., & Orlikowski, T. (1991). The 1sσ g and 2pσ u states of the H2 +, D2 + and HD+ ions. Molecular Physics, 74, 103–111.CrossRef
Metadata
Title
Adiabatic, Born-Oppenheimer, and Non-adiabatic Approaches
Author
Monika Stanke
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-27282-5_41

Premium Partner