Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. Computational Chemistry: From the Hydrogen Molecule to Nanostructures

Author : Lucjan Piela

Published in: Handbook of Computational Chemistry

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Quantum chemical calculations rely on a few fortunate circumstances like usually small relativistic and negligible electrodynamic (QED) corrections and large nuclei-to-electron mass ratio. The fast progress in computer technology revolutionized theoretical chemistry and gave birth to computational chemistry. The computational quantum chemistry provides for experimentalists the ready-to-use tools of new kind offering powerful insight into molecular internal structure and dynamics. It is important for the computational chemistry to elaborate methods, which look at molecule in a multiscale way, which provide first of all its global and synthetic description such as shape and charge distribution, and compare this description with those for other molecules. Only such a picture can free researchers from seeing molecules as a series of case-by-case studies. Chemistry represents a science of analogies and similarities, and computational chemistry should provide tools for seeing this. This is especially useful for the supramolecular chemistry, which allow chemists to planify and study intermolecular interactions. Some of them, involving concave and convex moieties, represent molecular recognition, which assures a perfect fitting of the two molecular shapes. A sequence of molecular recognitions often leads to self-assembling and self-organization, typical to nanostructures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Footnotes
1
Computational chemistry contributed significantly to applied mathematics, because new methods had to be invented in order to treat the algebraic problems of the previously unknown scale (like for M of the order of billions); see, e.g., reference Roos (1972).
 
2
That is, derived from the first principles of the (nonrelativistic) quantum mechanics
 
3
It is difficult to define what computational chemistry is. Obviously, whatever involves calculations in chemistry might be treated as part of it. This, however, sounds like a pure banality. The same is with the idea that computational chemistry means chemistry, which uses computers. It is questionable whether this problem needs any solution at all. If yes, the author sticks to the opinion that computational chemistry means quantitative description of chemical phenomena at the molecular/atomic level.
 
4
The speed as well as the capacity of computer’s memory increased about 100 billion times over the period of 40 years. This means that what now takes an hour of computations would require in 1960 about 10, 000 years of computing.
 
5
In addition, we assume the computer is so clever that it automatically rejects those solutions, which are not square integrable or do not satisfy the requirements of symmetry for fermions and bosons. Thus, all nonphysical solutions are rejected.
 
6
Bond patterns are the same for different conformers.
 
7
For a dipeptide, one has something like ten energy minima, counting only the backbone conformations (and not counting the side-chain conformations for simplicity). For very small protein of, say, a hundred amino acids, the number of conformations is therefore of the order of 10100, a very large number exceeding the estimated number of atoms in the Universe.
 
8
The low-frequency vibrations may be used as indicators to look at possible instabilities of the molecule, such as dissociation channels, formation of new bonds, etc. Moving all atoms, first according to a low-frequency normal mode vibration and continuing the atomic displacements according to the maximum gradient decrease, we may find the saddle point and then, sliding down, detect the products of a reaction channel.
 
9
The integration of \(\vert \Psi \vert ^{2}\) is over the coordinates (space and spin ones) of all the electrons except one (in our case the electron 1 with the coordinates r, σ 1) and in addition the summation over its spin coordinate (σ 1). As a result one obtains a function of the position of the electron 1 in space: ρ(r). The wave function \(\Psi \) is antisymmetric with respect to exchange of the coordinates of any two electrons, and, therefore, \(\vert \Psi \vert ^{2}\) is symmetric with respect to such an exchange. Hence, the definition of ρ is independent of the label of the electron we do not integrate over. According to this definition, ρ represents nothing else but the density of the electron cloud carrying N electrons and is proportional to the probability density of finding an electron at position r.
 
10
Strictly speaking the nuclear attractors do not represent critical points, because of the cusp condition (Kato 1957). This worry represents rather a pure theoretical problem, when, what is a common practice, one uses Gaussian atomic orbitals as the basis set.
 
11
Although this is only after assuming a reasonable threshold as a criterion. This is a common situation in chemistry – strictly speaking there is no such thing as chemical bond in a polyatomic molecule.
 
Literature
go back to reference Bader, R. F. W. (1994). Atoms in molecules. A quantum theory. Oxford: Clarendon Press. Bader, R. F. W. (1994). Atoms in molecules. A quantum theory. Oxford: Clarendon Press.
go back to reference Bloch, F. (1928). Uber die Quantenmechanik der Electronen in Kristallgittern. PhD Thesis. University of Leipzig. Bloch, F. (1928). Uber die Quantenmechanik der Electronen in Kristallgittern. PhD Thesis. University of Leipzig.
go back to reference Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln, Annalen der Physik, 84, 457.CrossRef Born, M., & Oppenheimer, J. R. (1927). Zur Quantentheorie der Molekeln, Annalen der Physik, 84, 457.CrossRef
go back to reference Boys, S. F., Cook, G. B., Reeves, C. M., & Shavitt, I. (1207). Automatic Fundamental Calculations of Molecular Structure. Nature, 178, 1956. Boys, S. F., Cook, G. B., Reeves, C. M., & Shavitt, I. (1207). Automatic Fundamental Calculations of Molecular Structure. Nature, 178, 1956.
go back to reference Brown, G. E., & Ravenhall, D. G. (1951). On the interaction of two electrons. Proceedings of the Royal Society A, 208, 552.CrossRef Brown, G. E., & Ravenhall, D. G. (1951). On the interaction of two electrons. Proceedings of the Royal Society A, 208, 552.CrossRef
go back to reference Cotton, F. A. (1990). Chemical applications of group theory (3rd ed.). New York: Wiley. Cotton, F. A. (1990). Chemical applications of group theory (3rd ed.). New York: Wiley.
go back to reference Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society of London, A117, 610; (1928) ibid., A118, 351. Dirac, P. A. M. (1928). The quantum theory of the electron. Proceedings of the Royal Society of London, A117, 610; (1928) ibid., A118, 351.
go back to reference Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126; (1930) „Selfconsistent field“ mit Austausch für Natrium. ibid., 62, 795. Fock, V. (1930). Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik, 61, 126; (1930) „Selfconsistent field“ mit Austausch für Natrium. ibid., 62, 795.
go back to reference Fukui, K., & Fujimoto, H. (1968). An MO-theoretical interpretation of nature of chemical reactions. I. Partitioning Analysis of Interaction Energy. Bulletin of the Chemical Society of Japan, 41, 1989. Fukui, K., & Fujimoto, H. (1968). An MO-theoretical interpretation of nature of chemical reactions. I. Partitioning Analysis of Interaction Energy. Bulletin of the Chemical Society of Japan, 41, 1989.
go back to reference Hartree, D. R. (1927). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proceedings of the Cambridge Philosophical Society, 24, 89. Hartree, D. R. (1927). The wave mechanics of an atom with a non-coulomb central field. Part I. Theory and methods. Proceedings of the Cambridge Philosophical Society, 24, 89.
go back to reference Heitler, W., & London, F. W. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455.CrossRef Heitler, W., & London, F. W. (1927). Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik. Zeitschrift für Physik, 44, 455.CrossRef
go back to reference Hellmann, H. (1937). Einführung in die Quantenchemie. Leipzig: Deuticke. Hellmann, H. (1937). Einführung in die Quantenchemie. Leipzig: Deuticke.
go back to reference Hund, F. (1927). Zur Deutung der Molekelspektren. I- III. Zeitschrift für Physik, 40, 742; (1927) ibid., 42, 93; (1927) ibid., 43, 805. Hund, F. (1927). Zur Deutung der Molekelspektren. I- III. Zeitschrift für Physik, 40, 742; (1927) ibid., 42, 93; (1927) ibid., 43, 805.
go back to reference Hylleraas, E. A. (1929). Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Zeitschrift für Physik, 54, 347.CrossRef Hylleraas, E. A. (1929). Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Zeitschrift für Physik, 54, 347.CrossRef
go back to reference James, H. M., & Coolidge, A. S. (1933). The ground state of the hydrogen molecule. Journal of Chemical Physics, 1 825.CrossRef James, H. M., & Coolidge, A. S. (1933). The ground state of the hydrogen molecule. Journal of Chemical Physics, 1 825.CrossRef
go back to reference Jeziorski, B., & Kołos, W. (1977). On Symmetry Forcing in the Perturbation Theory of Weak Intermolecular Forces. International Journal of Quantum Chemistry, 12, 91. Jeziorski, B., & Kołos, W. (1977). On Symmetry Forcing in the Perturbation Theory of Weak Intermolecular Forces. International Journal of Quantum Chemistry, 12, 91.
go back to reference Kato, T. (1957). On the eigenfunctions of many-particle systems in quantum mechanics. Communications on Pure and Applied Mathematics, 10, 151.CrossRef Kato, T. (1957). On the eigenfunctions of many-particle systems in quantum mechanics. Communications on Pure and Applied Mathematics, 10, 151.CrossRef
go back to reference Kołos, W., & Roothaan, C. C. J. (1960). Accurate electronic wave functions for the H2 molecule. Reviews of Modern Physics, 32, 219.CrossRef Kołos, W., & Roothaan, C. C. J. (1960). Accurate electronic wave functions for the H2 molecule. Reviews of Modern Physics, 32, 219.CrossRef
go back to reference Koliński, A., & Skolnick, J. (2004). Reduced models of proteins and their applications. Polymer, 45, 511.CrossRef Koliński, A., & Skolnick, J. (2004). Reduced models of proteins and their applications. Polymer, 45, 511.CrossRef
go back to reference Koopmaans, T. C. (1933/1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104. Koopmaans, T. C. (1933/1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica, 1, 104.
go back to reference Łach, G., Jeziorski, B., & Szalewicz, K. (2004). Radiative corrections to the polarizability of helium. Physical Review Letters, 92, 233001.CrossRef Łach, G., Jeziorski, B., & Szalewicz, K. (2004). Radiative corrections to the polarizability of helium. Physical Review Letters, 92, 233001.CrossRef
go back to reference Lee, B., & Richards, F. M. (1971). The interpretation of protein structures. Estimation of static accessibility. Journal of Molecular Biology, 55, 379. Lee, B., & Richards, F. M. (1971). The interpretation of protein structures. Estimation of static accessibility. Journal of Molecular Biology, 55, 379.
go back to reference Pestka, G., Bylicki, M., & Karwowski, J. (2008). Dirac- Coulomb equation: Playing with artifacts In S. Wilson, P. J. Grout, J. Maruani, G. Delgado-Berrio, & P. Piecuch (Eds.), Frontiers in quantum systems in chemistry and physics (pp. 215–238). Heidelberg: Springer.CrossRef Pestka, G., Bylicki, M., & Karwowski, J. (2008). Dirac- Coulomb equation: Playing with artifacts In S. Wilson, P. J. Grout, J. Maruani, G. Delgado-Berrio, & P. Piecuch (Eds.), Frontiers in quantum systems in chemistry and physics (pp. 215–238). Heidelberg: Springer.CrossRef
go back to reference Piela, L. (2002). Deformation methods of global optimization in chemistry and physics. In P. M. Pardalos & H. E. Romeijn (Eds.), Handbook of global optimization (Vol. 2, pp. 461–488). Dordrecht/Boston: Kluwer Academic Publishers.CrossRef Piela, L. (2002). Deformation methods of global optimization in chemistry and physics. In P. M. Pardalos & H. E. Romeijn (Eds.), Handbook of global optimization (Vol. 2, pp. 461–488). Dordrecht/Boston: Kluwer Academic Publishers.CrossRef
go back to reference Piela, L. (2014). Ideas of quantum chemistry (2nd ed.). Amsterdam: Elsevier. Piela, L. (2014). Ideas of quantum chemistry (2nd ed.). Amsterdam: Elsevier.
go back to reference Roos, B. O. (1972). A new method for large-scale CI calculations. Chemical Physics Letters, 15, 153.CrossRef Roos, B. O. (1972). A new method for large-scale CI calculations. Chemical Physics Letters, 15, 153.CrossRef
go back to reference Schrödinger, E. (1926). Quantisierung als Eigenwertproblem.I-IV. Annalen der Physik, 79, 361; (1926) ibid., 79, 489; (1926) ibid., 80, 437; (1926) ibid., 81, 109. Schrödinger, E. (1926). Quantisierung als Eigenwertproblem.I-IV. Annalen der Physik, 79, 361; (1926) ibid., 79, 489; (1926) ibid., 80, 437; (1926) ibid., 81, 109.
go back to reference Slater, J. (1930). Cohesion in monovalent metals. Physical Review, 35, 509.CrossRef Slater, J. (1930). Cohesion in monovalent metals. Physical Review, 35, 509.CrossRef
go back to reference Woodward, R. B., & Hoffmann, R. (1965). Selection rules for sigmatropic reactions. Journal of the American Chemical Society, 87, 395, 2511.CrossRef Woodward, R. B., & Hoffmann, R. (1965). Selection rules for sigmatropic reactions. Journal of the American Chemical Society, 87, 395, 2511.CrossRef
Metadata
Title
Computational Chemistry: From the Hydrogen Molecule to Nanostructures
Author
Lucjan Piela
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-27282-5_1

Premium Partner