Skip to main content
Top

2019 | OriginalPaper | Chapter

12. Adsorption Mechanism of Cellulose Hydrogel by Computational Simulation

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this chapter, different adsorption mechanisms of cellulose hydrogel will be investigated. For this aim, computational simulation will be used. On an atomistic scale, cellulose hydrogel has different hydrogen bond properties. The OH groups can only act as hydrogen bond acceptors, but due to the negative charge density, there are still more water molecules assembled around adsorbents. Besides intermolecular hydrogen bonding, it has some hydrophobic properties. It means that some hydrophobic materials can be adsorbed on the surface of cellulose hydrogel at specific conditions. Most force fields for this simulation are empirical and consist of a summation of bonded forces associated with chemical bonds, bond angles, and bond dihedrals and nonbonded forces associated with van der Waals forces and electrostatic charge. Empirical potentials represent quantum mechanical effects in a limited way through ad hoc functional approximations.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Marhöfer RJ, Reiling S, Brickmann J (1996) Computer simulations of crystal structures and elastic properties of cellulose. Ber Bunsenges Phys Chem 100(8):1350–1354CrossRef Marhöfer RJ, Reiling S, Brickmann J (1996) Computer simulations of crystal structures and elastic properties of cellulose. Ber Bunsenges Phys Chem 100(8):1350–1354CrossRef
2.
go back to reference Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152CrossRef Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Brady JW (2006) Computer simulation studies of microcrystalline cellulose Iβ. Carbohydr Res 341(1):138–152CrossRef
3.
go back to reference O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRef O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRef
4.
go back to reference Rizwan S, Dong Y-D, Boyd B, Rades T, Hook S (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38(5):478–485CrossRef Rizwan S, Dong Y-D, Boyd B, Rades T, Hook S (2007) Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Micron 38(5):478–485CrossRef
5.
go back to reference Wang Q, Johnson JK (1999) Computer simulations of hydrogen adsorption on graphite nanofibers. J Phys Chem B 103(2):277–281CrossRef Wang Q, Johnson JK (1999) Computer simulations of hydrogen adsorption on graphite nanofibers. J Phys Chem B 103(2):277–281CrossRef
6.
go back to reference Dislich H (1983) Glassy and crystalline systems from gels: chemical basis and technical application. J Non-Cryst Solids 57(3):371–388CrossRef Dislich H (1983) Glassy and crystalline systems from gels: chemical basis and technical application. J Non-Cryst Solids 57(3):371–388CrossRef
7.
go back to reference Wang J, Somasundaran P (2005) Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291(1):75–83CrossRef Wang J, Somasundaran P (2005) Adsorption and conformation of carboxymethyl cellulose at solid–liquid interfaces using spectroscopic, AFM and allied techniques. J Colloid Interface Sci 291(1):75–83CrossRef
8.
go back to reference Mohanambe L, Vasudevan S (2005) Structure of a cyclodextrin functionalized anionic clay: XRD analysis, spectroscopy, and computer simulations. Langmuir 21(23):10735–10742CrossRef Mohanambe L, Vasudevan S (2005) Structure of a cyclodextrin functionalized anionic clay: XRD analysis, spectroscopy, and computer simulations. Langmuir 21(23):10735–10742CrossRef
9.
go back to reference Van der Klis J, Van Voorst A, Van Cruyningen C (1993) Effect of a soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. Br Poult Sci 34(5):971–983CrossRef Van der Klis J, Van Voorst A, Van Cruyningen C (1993) Effect of a soluble polysaccharide (carboxy methyl cellulose) on the physico-chemical conditions in the gastrointestinal tract of broilers. Br Poult Sci 34(5):971–983CrossRef
10.
go back to reference Wellham E, Elber L, Yan D (1992) The role of carboxy methyl cellulose in the flotation of a nickel sulphide transition ore. Miner Eng 5(3):381–395CrossRef Wellham E, Elber L, Yan D (1992) The role of carboxy methyl cellulose in the flotation of a nickel sulphide transition ore. Miner Eng 5(3):381–395CrossRef
11.
go back to reference Biswal D, Singh R (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387CrossRef Biswal D, Singh R (2004) Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr Polym 57(4):379–387CrossRef
12.
go back to reference Paavilainen S, Róg T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755CrossRef Paavilainen S, Róg T, Vattulainen I (2011) Analysis of twisting of cellulose nanofibrils in atomistic molecular dynamics simulations. J Phys Chem B 115(14):3747–3755CrossRef
13.
go back to reference Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRef
14.
go back to reference Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816CrossRef Korhonen JT, Kettunen M, Ras RH, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816CrossRef
15.
go back to reference Simon D, Kadiri Y, Picard G (2008) Nano cellulose crystallites: optical, photonic and electro-magnetic properties. In: NSTI NANOTECH 2008, technical proceedings, vol 1, pp 840–843 Simon D, Kadiri Y, Picard G (2008) Nano cellulose crystallites: optical, photonic and electro-magnetic properties. In: NSTI NANOTECH 2008, technical proceedings, vol 1, pp 840–843
16.
go back to reference Shew C-Y, Yethiraj A (1999) Computer simulations and integral equation theory for the structure of salt-free rigid rod polyelectrolyte solutions: explicit incorporation of counterions. J Chem Phys 110(23):11599–11607CrossRef Shew C-Y, Yethiraj A (1999) Computer simulations and integral equation theory for the structure of salt-free rigid rod polyelectrolyte solutions: explicit incorporation of counterions. J Chem Phys 110(23):11599–11607CrossRef
17.
go back to reference Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New York Oosawa F (1971) Polyelectrolytes. Marcel Dekker, New York
18.
go back to reference Christos GA, Carnie SL (1990) Computer simulations of polyelectrolyte chains in salt solution. J Chem Phys 92(12):7661–7677CrossRef Christos GA, Carnie SL (1990) Computer simulations of polyelectrolyte chains in salt solution. J Chem Phys 92(12):7661–7677CrossRef
19.
go back to reference Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33(11):4213–4219CrossRef Shiratori SS, Rubner MF (2000) pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules 33(11):4213–4219CrossRef
20.
go back to reference Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 1. Effects of chain flexibility. Langmuir 12(2):305–314CrossRef Wallin T, Linse P (1996) Monte Carlo simulations of polyelectrolytes at charged micelles. 1. Effects of chain flexibility. Langmuir 12(2):305–314CrossRef
21.
go back to reference Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595CrossRef Bergenstråhle M, Wohlert J, Larsson PT, Mazeau K, Berglund LA (2008) Dynamics of cellulose-water interfaces: NMR spin-lattice relaxation times calculated from atomistic computer simulations. J Phys Chem B 112(9):2590–2595CrossRef
22.
go back to reference Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114(12):4293–4301CrossRef Liu H, Sale KL, Holmes BM, Simmons BA, Singh S (2010) Understanding the interactions of cellulose with ionic liquids: a molecular dynamics study. J Phys Chem B 114(12):4293–4301CrossRef
23.
go back to reference Kremer F, Huwe A, Schönhals A, Rózanski S (2012) Molecular dynamics in confining space. UK: Springer Kremer F, Huwe A, Schönhals A, Rózanski S (2012) Molecular dynamics in confining space. UK: Springer
24.
go back to reference Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72(15):3512–3517CrossRef Ermakov SV, Jacobson SC, Ramsey JM (2000) Computer simulations of electrokinetic injection techniques in microfluidic devices. Anal Chem 72(15):3512–3517CrossRef
25.
go back to reference Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103(2):321–348CrossRef Zhigilei LV, Leveugle E, Garrison BJ, Yingling YG, Zeifman MI (2003) Computer simulations of laser ablation of molecular substrates. Chem Rev 103(2):321–348CrossRef
Metadata
Title
Adsorption Mechanism of Cellulose Hydrogel by Computational Simulation
Author
Ali Jebali
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-319-77830-3_14

Premium Partners