Skip to main content
Top

2021 | OriginalPaper | Chapter

Adsorption of Anions on Minerals

Authors : Feifei Jia, Min Dai, Bingqiao Yang

Published in: Adsorption at Natural Minerals/Water Interfaces

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Natural minerals stand out from conventional materials as promising adsorbents for the anions removal from aqueous solution due to their efficient adsorption performance, cost-effectiveness and easy-availability. This chapter summarizes the advances of natural minerals as adsorbents for the removal of anions (arsenic, phosphorus, fluoride, nitrate) in water. The common natural minerals, as well as their adsorption capacity, are introduced for each anion. The affecting factors and adsorption mechanism are also highlighted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sarquis, M.: Arsenic and old myths. RI Med. 77, 233–234 (1994) Sarquis, M.: Arsenic and old myths. RI Med. 77, 233–234 (1994)
2.
go back to reference Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002)CrossRef Mandal, B.K., Suzuki, K.T.: Arsenic round the world: a review. Talanta 58, 201–235 (2002)CrossRef
3.
go back to reference Smedley, P.L., Kinniburgh, D.G.: A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002)CrossRef Smedley, P.L., Kinniburgh, D.G.: A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17, 517–568 (2002)CrossRef
4.
go back to reference Mohan, D., Pittman, C.U.: Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142, 1–53 (2007)CrossRef Mohan, D., Pittman, C.U.: Arsenic removal from water/wastewater using adsorbents—a critical review. J. Hazard. Mater. 142, 1–53 (2007)CrossRef
5.
go back to reference Lafferty, B.J., Kramer, T. Methyl arsenic adsorption and desorption behavior on iron oxides methyl arsenic adsorption and desorption behavior on iron oxides (2004) Lafferty, B.J., Kramer, T. Methyl arsenic adsorption and desorption behavior on iron oxides methyl arsenic adsorption and desorption behavior on iron oxides (2004)
6.
go back to reference Rahman, M.A., Hassler, C.: Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat. Toxicol. 146, 212–219 (2014)CrossRef Rahman, M.A., Hassler, C.: Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat. Toxicol. 146, 212–219 (2014)CrossRef
7.
go back to reference Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin, M.: A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. (2011) Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., Mukhlisin, M.: A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. (2011)
8.
go back to reference Huang, J.H., Matzner, E.: Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim. Cosmochim. Acta 70, 2023–2033 (2006)CrossRef Huang, J.H., Matzner, E.: Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim. Cosmochim. Acta 70, 2023–2033 (2006)CrossRef
9.
go back to reference Cullen, W.R., Reimer, K.J.: Arsenic speciation in the environment. Chem. Rev. 89, 713–764 (1989)CrossRef Cullen, W.R., Reimer, K.J.: Arsenic speciation in the environment. Chem. Rev. 89, 713–764 (1989)CrossRef
10.
go back to reference Wen, W., Wen, J., Lu, L., Liu, H., Yang, J., Cheng, H., Che, W., Li, L., Zhang, G.: Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers. Toxicol. Appl. Pharm. 254, 41–47 (2011)CrossRef Wen, W., Wen, J., Lu, L., Liu, H., Yang, J., Cheng, H., Che, W., Li, L., Zhang, G.: Metabolites of arsenic and increased DNA damage of p53 gene in arsenic plant workers. Toxicol. Appl. Pharm. 254, 41–47 (2011)CrossRef
11.
go back to reference Singh, R., Singh, S., Parihar, P., Singh, V.P., Prasad, S.M.: Arsenic contamination, consequences and remediation techniques: a review. Ecotox. Environ. Safe 112, 247–270 (2015)CrossRef Singh, R., Singh, S., Parihar, P., Singh, V.P., Prasad, S.M.: Arsenic contamination, consequences and remediation techniques: a review. Ecotox. Environ. Safe 112, 247–270 (2015)CrossRef
12.
go back to reference WHO: Guidelines for Drinking Water Quality, 4th edn. World Health Organisation, Geneva, Switzerland (2011) WHO: Guidelines for Drinking Water Quality, 4th edn. World Health Organisation, Geneva, Switzerland (2011)
13.
go back to reference Chakraborti, D., Das, B., Rahman, M.M., Chowdhury, U.K., Biswas, B., Goswami, A.B., Nayak, B., Pal, A., Sengupta, M.K., Ahamed, S., Hossain, A., Basu, G., Roychowdhury, T., Das, D.: Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol. Nutr. Food Res. Int. 53, 542–551 (2009)CrossRef Chakraborti, D., Das, B., Rahman, M.M., Chowdhury, U.K., Biswas, B., Goswami, A.B., Nayak, B., Pal, A., Sengupta, M.K., Ahamed, S., Hossain, A., Basu, G., Roychowdhury, T., Das, D.: Status of groundwater arsenic contamination in the state of West Bengal, India: a 20-year study report. Mol. Nutr. Food Res. Int. 53, 542–551 (2009)CrossRef
14.
go back to reference Ungureanu, G., Santos, S., Boaventura, R., Botelho, C.: Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151, 326–342 (2015)CrossRef Ungureanu, G., Santos, S., Boaventura, R., Botelho, C.: Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 151, 326–342 (2015)CrossRef
15.
go back to reference Smedley, P.L., Zhang, M., Zhang, G., Luo, Z.: Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 18, 1453–1477 (2003)CrossRef Smedley, P.L., Zhang, M., Zhang, G., Luo, Z.: Mobilisation of arsenic and other trace elements in fluviolacustrine aquifers of the Huhhot Basin, Inner Mongolia. Appl. Geochem. 18, 1453–1477 (2003)CrossRef
16.
go back to reference Sa, D., Go, L., Gira, I., Velasco, A., Morales, E.: Arsenic speciation in river and estuarine waters from southwest Spain. Sci. Total Environ. 345, 207–217 (2005)CrossRef Sa, D., Go, L., Gira, I., Velasco, A., Morales, E.: Arsenic speciation in river and estuarine waters from southwest Spain. Sci. Total Environ. 345, 207–217 (2005)CrossRef
17.
go back to reference Mandal, B., Chowdhury, T., Samanta, G., Basu, G., Chowdhary, P., Chanda, C., Lodh, D., Karan, N., Dhar, R., Tamili, D., Das, D., Saha, K., Chakraborti, D.: Arsenic in groundwater in seven districts of West Bengal, India-The biggest aresenic calamity in the world. Curr. Sci. 70, 976–986 (1996) Mandal, B., Chowdhury, T., Samanta, G., Basu, G., Chowdhary, P., Chanda, C., Lodh, D., Karan, N., Dhar, R., Tamili, D., Das, D., Saha, K., Chakraborti, D.: Arsenic in groundwater in seven districts of West Bengal, India-The biggest aresenic calamity in the world. Curr. Sci. 70, 976–986 (1996)
18.
go back to reference Peter, R., Hugh, B., Keith, R.: Arsenic Pollution: A global problem Leaflet. Wiley (2009) Peter, R., Hugh, B., Keith, R.: Arsenic Pollution: A global problem Leaflet. Wiley (2009)
19.
go back to reference Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/ hydroxides—a review. Int. J. Eng. Sci. Technol. 2, 127–146 (2010) Mohapatra, M., Anand, S.: Synthesis and applications of nano-structured iron oxides/ hydroxides—a review. Int. J. Eng. Sci. Technol. 2, 127–146 (2010)
20.
go back to reference Cornell, R.M., Schwertmann, U.: The Iron Oxides Structure, Properties, Reactions, Occurrences and Uses. Wiley (2003) Cornell, R.M., Schwertmann, U.: The Iron Oxides Structure, Properties, Reactions, Occurrences and Uses. Wiley (2003)
21.
go back to reference Ohnalkova, A.L.C.D., Ussell, C.O.K.R.: Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am. Mineral. 88, 1903–1914 (2003)CrossRef Ohnalkova, A.L.C.D., Ussell, C.O.K.R.: Transformation of 2-line ferrihydrite to 6-line ferrihydrite under oxic and anoxic conditions. Am. Mineral. 88, 1903–1914 (2003)CrossRef
22.
go back to reference Raven, K.P., Jain, A., Loeppert, R.H.: Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32, 344–349 (1998)CrossRef Raven, K.P., Jain, A., Loeppert, R.H.: Arsenite and arsenate adsorption on ferrihydrite: kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32, 344–349 (1998)CrossRef
23.
go back to reference Martin, M., Violante, A., Ajmone-Marsan, F., Barberis, E.: Surface interactions of arsenite and arsenate on soil colloids. Soil Sci. Soc. Am. J. 78, 157 (2014)CrossRef Martin, M., Violante, A., Ajmone-Marsan, F., Barberis, E.: Surface interactions of arsenite and arsenate on soil colloids. Soil Sci. Soc. Am. J. 78, 157 (2014)CrossRef
24.
go back to reference Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T., Wang, Y.: Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 353, 1087–1094 (2015)CrossRef Jiang, X., Peng, C., Fu, D., Chen, Z., Shen, L., Li, Q., Ouyang, T., Wang, Y.: Removal of arsenate by ferrihydrite via surface complexation and surface precipitation. Appl. Surf. Sci. 353, 1087–1094 (2015)CrossRef
25.
go back to reference Giménez, J., Martínez, M., de Pablo, J., Rovira, M., Duro, L.: Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 141, 575–580 (2007)CrossRef Giménez, J., Martínez, M., de Pablo, J., Rovira, M., Duro, L.: Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 141, 575–580 (2007)CrossRef
26.
go back to reference Silva, J., Mello, J.W.V., Gasparon, M., Abrahão, W.A.P., Ciminelli, V.S.T., Jong, T.: The role of Al-Goethites on arsenate mobility. Water Res. 44, 5684–5692 (2010)CrossRef Silva, J., Mello, J.W.V., Gasparon, M., Abrahão, W.A.P., Ciminelli, V.S.T., Jong, T.: The role of Al-Goethites on arsenate mobility. Water Res. 44, 5684–5692 (2010)CrossRef
27.
go back to reference Mamindy-Pajany, Y., Hurel, C., Marmier, N., Roméo, M.: Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 281, 93–99 (2011)CrossRef Mamindy-Pajany, Y., Hurel, C., Marmier, N., Roméo, M.: Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility. Desalination 281, 93–99 (2011)CrossRef
28.
go back to reference Zhao, K., Guo, H.: Behavior and mechanism of arsenate adsorption on activated natural siderite: Evidences from FTIR and XANES analysis. Environ. Sci. Pollut. Res. 21, 1944–1953 (2014)CrossRef Zhao, K., Guo, H.: Behavior and mechanism of arsenate adsorption on activated natural siderite: Evidences from FTIR and XANES analysis. Environ. Sci. Pollut. Res. 21, 1944–1953 (2014)CrossRef
29.
go back to reference Zheng, Y.M., Lim, S.F., Chen, J.P.: Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal. J. Colloid Interf. Sci. 338, 22–29 (2009)CrossRef Zheng, Y.M., Lim, S.F., Chen, J.P.: Preparation and characterization of zirconium-based magnetic sorbent for arsenate removal. J. Colloid Interf. Sci. 338, 22–29 (2009)CrossRef
30.
go back to reference Pang, S.Y., Jiang, J., Ma, J.: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction. Environ. Sci. Technol. 45, 307–312 (2011)CrossRef Pang, S.Y., Jiang, J., Ma, J.: Oxidation of sulfoxides and arsenic(III) in corrosion of nanoscale zero valent iron by oxygen: evidence against ferryl ions (Fe(IV)) as active intermediates in fenton reaction. Environ. Sci. Technol. 45, 307–312 (2011)CrossRef
31.
go back to reference Wu, C.C., Hus, L.C., Chiang, P.N., Liu, J.C., Kuan, W.H., Chen, C.C., Tzou, Y.M., Wang, M.K., Hwang, C.E.: Oxidative removal of arsenite by Fe(II)- and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl) under oxic conditions. Water Res. 47, 2583–2591 (2013)CrossRef Wu, C.C., Hus, L.C., Chiang, P.N., Liu, J.C., Kuan, W.H., Chen, C.C., Tzou, Y.M., Wang, M.K., Hwang, C.E.: Oxidative removal of arsenite by Fe(II)- and polyoxometalate (POM)-amended zero-valent aluminum (ZVAl) under oxic conditions. Water Res. 47, 2583–2591 (2013)CrossRef
32.
go back to reference Morin, G., Wang, Y., Foster, A.L., Juillot, F., Calas, G.: XANES evidence for rapid arsenic (III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ. Sci. Technol. 44, 5416–5422 (2010)CrossRef Morin, G., Wang, Y., Foster, A.L., Juillot, F., Calas, G.: XANES evidence for rapid arsenic (III) oxidation at magnetite and ferrihydrite surfaces by dissolved O2 via Fe2+-mediated reactions. Environ. Sci. Technol. 44, 5416–5422 (2010)CrossRef
33.
go back to reference Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V.L.: The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 8, 71–75 (2007)CrossRef Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V.L.: The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 8, 71–75 (2007)CrossRef
34.
go back to reference Lin, Y.F., Chen, J.L., Xu, C.Y., Chung, T.W.: One-pot synthesis of paramagnetic iron(III) hydroxide nanoplates and ferrimagnetic magnetite nanoparticles for the removal of arsenic ions. Chem. Eng. J. 250, 409–415 (2014)CrossRef Lin, Y.F., Chen, J.L., Xu, C.Y., Chung, T.W.: One-pot synthesis of paramagnetic iron(III) hydroxide nanoplates and ferrimagnetic magnetite nanoparticles for the removal of arsenic ions. Chem. Eng. J. 250, 409–415 (2014)CrossRef
35.
go back to reference Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C., Kim, K.S.: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)CrossRef Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I.C., Kim, K.S.: Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4, 3979–3986 (2010)CrossRef
36.
go back to reference Kim, Y., Kim, C., Choi, I., Rengaraj, S., Yi, J.: Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 38, 924–931 (2004)CrossRef Kim, Y., Kim, C., Choi, I., Rengaraj, S., Yi, J.: Arsenic removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 38, 924–931 (2004)CrossRef
37.
go back to reference Lin, T.F., Wu, J.K.: Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res. 35, 049–2057 (2001)CrossRef Lin, T.F., Wu, J.K.: Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Res. 35, 049–2057 (2001)CrossRef
38.
go back to reference Guan, X.H., Su, T., Wang, J.: Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model. J. Hazard. Mater. 166, 39–45 (2009)CrossRef Guan, X.H., Su, T., Wang, J.: Quantifying effects of pH and surface loading on arsenic adsorption on NanoActive alumina using a speciation-based model. J. Hazard. Mater. 166, 39–45 (2009)CrossRef
39.
go back to reference Ladeira, A.C.Q.A.-C.V.S.T.: Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res. 38, 2087–2094 (2004)CrossRef Ladeira, A.C.Q.A.-C.V.S.T.: Adsorption and desorption of arsenic on an oxisol and its constituents. Water Res. 38, 2087–2094 (2004)CrossRef
40.
go back to reference Ladeira, A.C.Q., Ciminelli, V.S.T., Duarte, H.A., Alves, M.C.M., Ramos, A.Y.: Mechanism of anion retention from EXAFS and density functional calculations: arsenic (V) adsorbed on gibbsite. Geochim. Cosmochim. Acta 65, 1211–1217 (2001)CrossRef Ladeira, A.C.Q., Ciminelli, V.S.T., Duarte, H.A., Alves, M.C.M., Ramos, A.Y.: Mechanism of anion retention from EXAFS and density functional calculations: arsenic (V) adsorbed on gibbsite. Geochim. Cosmochim. Acta 65, 1211–1217 (2001)CrossRef
41.
go back to reference Arai, Y., Elzinga, E.J., Sparks, D.L.: X-ray Absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. J. Colloid Interf. Sci. 235, 80–88 (2001)CrossRef Arai, Y., Elzinga, E.J., Sparks, D.L.: X-ray Absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. J. Colloid Interf. Sci. 235, 80–88 (2001)CrossRef
42.
go back to reference Arai, Y., Sparks, D.L., Davis, J.A.: Arsenate adsorption mechanisms at the allophane—water interface. Environ. Sci. Technol. 39, 2537–2544 (2005)CrossRef Arai, Y., Sparks, D.L., Davis, J.A.: Arsenate adsorption mechanisms at the allophane—water interface. Environ. Sci. Technol. 39, 2537–2544 (2005)CrossRef
43.
go back to reference Masue, Y., Loeppert, R.H.: Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ. Sci. Technol. 41, 837–842 (2007)CrossRef Masue, Y., Loeppert, R.H.: Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum: iron hydroxides. Environ. Sci. Technol. 41, 837–842 (2007)CrossRef
44.
go back to reference Poulin, É., Blais, J.F., Mercier, G.: Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy 92, 16–25 (2008)CrossRef Poulin, É., Blais, J.F., Mercier, G.: Transformation of red mud from aluminium industry into a coagulant for wastewater treatment. Hydrometallurgy 92, 16–25 (2008)CrossRef
45.
go back to reference Altundogan, H.S., Altundogan, S., Tümen, F., Bildik, M.: Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag. 22, 357–363 (2002)CrossRef Altundogan, H.S., Altundogan, S., Tümen, F., Bildik, M.: Arsenic adsorption from aqueous solutions by activated red mud. Waste Manag. 22, 357–363 (2002)CrossRef
46.
go back to reference Burke, I.T., Peacock, C.L., Lockwood, C.L., Stewart, D.I., Mortimer, R.J.G., Ward, M.B., Renforth, P., Gruiz, K., Mayes, W.M.: Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ. Sci. Technol. 47, 6527–6535 (2013)CrossRef Burke, I.T., Peacock, C.L., Lockwood, C.L., Stewart, D.I., Mortimer, R.J.G., Ward, M.B., Renforth, P., Gruiz, K., Mayes, W.M.: Behavior of aluminum, arsenic, and vanadium during the neutralization of red mud leachate by HCl, gypsum, or seawater. Environ. Sci. Technol. 47, 6527–6535 (2013)CrossRef
47.
go back to reference Amirbahman, A., Kent, D.B., Curtis, G.P., Davis, J.A.: Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials. Geochim. Cosmochim. Acta 70, 533–547 (2006)CrossRef Amirbahman, A., Kent, D.B., Curtis, G.P., Davis, J.A.: Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials. Geochim. Cosmochim. Acta 70, 533–547 (2006)CrossRef
48.
go back to reference Nesbitt, H.W., Canning, G.W., Bancroft, G.M.: XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism. Geochim. Cosmochim. Acta 62, 2097–2110 (1998)CrossRef Nesbitt, H.W., Canning, G.W., Bancroft, G.M.: XPS study of reductive dissolution of 7Å-birnessite by H3AsO3, with constraints on reaction mechanism. Geochim. Cosmochim. Acta 62, 2097–2110 (1998)CrossRef
49.
go back to reference Manning, B.A., Fendorf, S.E., Bostick, B.: Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite arsenic (III) oxidation and arsenic (V) (2002) Manning, B.A., Fendorf, S.E., Bostick, B.: Arsenic (III) oxidation and arsenic (V) adsorption reactions on synthetic birnessite arsenic (III) oxidation and arsenic (V) (2002)
50.
go back to reference Zhang, G., Liu, F., Liu, H., Qu, J., Liu, R.: Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Environ. Sci. Technol. 48, 10316–10322 (2014)CrossRef Zhang, G., Liu, F., Liu, H., Qu, J., Liu, R.: Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Environ. Sci. Technol. 48, 10316–10322 (2014)CrossRef
51.
go back to reference Dias, A., Sá, R.G., S pitale, M.C., Athayde, M., Ciminelli, V.S.T.: Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic(III) oxidation. Mater. Res. Bull. 43, 1528–1538 (2008)CrossRef Dias, A., Sá, R.G., S pitale, M.C., Athayde, M., Ciminelli, V.S.T.: Microwave-hydrothermal synthesis of nanostructured Na-birnessites and phase transformation by arsenic(III) oxidation. Mater. Res. Bull. 43, 1528–1538 (2008)CrossRef
52.
go back to reference Saleh, T.A., Agarwal, S., Gupta, V.K.: Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl. Catal. B-Environ. 106, 46–53 (2011) Saleh, T.A., Agarwal, S., Gupta, V.K.: Synthesis of MWCNT/MnO2 and their application for simultaneous oxidation of arsenite and sorption of arsenate. Appl. Catal. B-Environ. 106, 46–53 (2011)
53.
go back to reference Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L., Meng, X.: Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 39, 2327–2337 (2005)CrossRef Pena, M.E., Korfiatis, G.P., Patel, M., Lippincott, L., Meng, X.: Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 39, 2327–2337 (2005)CrossRef
54.
go back to reference Bang, S., Patel, M., Lippincott, L., Meng, X.: Removal of arsenic from groundwater by granular titanium dioxide adsorben. Chemosphere 60, 389–397 (2005)CrossRef Bang, S., Patel, M., Lippincott, L., Meng, X.: Removal of arsenic from groundwater by granular titanium dioxide adsorben. Chemosphere 60, 389–397 (2005)CrossRef
55.
go back to reference Pena, M., Meng, X., Korfiatis, G.P., Jing, C.: Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol. 40, 1257–1262 (2006)CrossRef Pena, M., Meng, X., Korfiatis, G.P., Jing, C.: Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol. 40, 1257–1262 (2006)CrossRef
56.
go back to reference Yu, Y., Yu, L., Chen, J.P.: Introduction of an yttrium-manganese binary composite that has extremely high adsorption capacity for arsenate uptake in different water conditions. Ind. Eng. Chem. Res. 54, 3000–3008 (2015)CrossRef Yu, Y., Yu, L., Chen, J.P.: Introduction of an yttrium-manganese binary composite that has extremely high adsorption capacity for arsenate uptake in different water conditions. Ind. Eng. Chem. Res. 54, 3000–3008 (2015)CrossRef
57.
go back to reference Goswami, A., Raul, P.K., Purkait, M.K.: Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 90, 1387–1396 (2012)CrossRef Goswami, A., Raul, P.K., Purkait, M.K.: Arsenic adsorption using copper (II) oxide nanoparticles. Chem. Eng. Res. Des. 90, 1387–1396 (2012)CrossRef
58.
go back to reference Martinson, C.A., Reddy, K.J.: Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interf. Sci. 336, 406–411 (2009)CrossRef Martinson, C.A., Reddy, K.J.: Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J. Colloid Interf. Sci. 336, 406–411 (2009)CrossRef
59.
go back to reference Yu, Y., Yu, L., Sun, M., Paul Chen, J.: Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption. J. Colloid Interface Sci. 474, 216–222 (2016)CrossRef Yu, Y., Yu, L., Sun, M., Paul Chen, J.: Facile synthesis of highly active hydrated yttrium oxide towards arsenate adsorption. J. Colloid Interface Sci. 474, 216–222 (2016)CrossRef
60.
go back to reference Wasay, S.A., Haron, M.J., Uchiumi, A., Tokunaga, S.: Removal of arsenite and arsenate ions from aqueous solution by basic yttrium carbonate. Water Res. 30, 1143–1148 (1996)CrossRef Wasay, S.A., Haron, M.J., Uchiumi, A., Tokunaga, S.: Removal of arsenite and arsenate ions from aqueous solution by basic yttrium carbonate. Water Res. 30, 1143–1148 (1996)CrossRef
61.
go back to reference Li, R., Li, Q., Gao, S., Shang, J.K.: Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem. Eng. J. 185–186, 127–135 (2012)CrossRef Li, R., Li, Q., Gao, S., Shang, J.K.: Exceptional arsenic adsorption performance of hydrous cerium oxide nanoparticles: part A. Adsorption capacity and mechanism. Chem. Eng. J. 185–186, 127–135 (2012)CrossRef
62.
go back to reference Cui, H., Li, Q., Gao, S., Shang, J.K.: Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 18, 1418–1427 (2012)CrossRef Cui, H., Li, Q., Gao, S., Shang, J.K.: Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J. Ind. Eng. Chem. 18, 1418–1427 (2012)CrossRef
63.
go back to reference Uddin, M.K.: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017)CrossRef Uddin, M.K.: A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 308, 438–462 (2017)CrossRef
64.
go back to reference Mohapatra, D., Mishra, D., Chaudhury, G.R., Das, R.P.: Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J. Environ. Sci. Heal A 42, 463–469 (2007)CrossRef Mohapatra, D., Mishra, D., Chaudhury, G.R., Das, R.P.: Arsenic(V) adsorption mechanism using kaolinite, montmorillonite and illite from aqueous medium. J. Environ. Sci. Heal A 42, 463–469 (2007)CrossRef
65.
go back to reference Eloussaief, M., Bouaziz, S., Kallel, N., Benzina, M.: Valorization of El Haria clay in the removal of arsenic from aqueous solution. Desalin. Water Treat 52, 2220–2224 (2014)CrossRef Eloussaief, M., Bouaziz, S., Kallel, N., Benzina, M.: Valorization of El Haria clay in the removal of arsenic from aqueous solution. Desalin. Water Treat 52, 2220–2224 (2014)CrossRef
66.
go back to reference Bentahar, Y., Hurel, C., Draoui, K., Khairoun, S., Marmier, N.: Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl. Clay Sci. 119, 385–392 (2016)CrossRef Bentahar, Y., Hurel, C., Draoui, K., Khairoun, S., Marmier, N.: Adsorptive properties of Moroccan clays for the removal of arsenic(V) from aqueous solution. Appl. Clay Sci. 119, 385–392 (2016)CrossRef
67.
go back to reference Chutia, P., Kato, S., Kojima, T., Satokawa, S.: Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 162, 440–447 (2009)CrossRef Chutia, P., Kato, S., Kojima, T., Satokawa, S.: Arsenic adsorption from aqueous solution on synthetic zeolites. J. Hazard. Mater. 162, 440–447 (2009)CrossRef
68.
go back to reference Shevade, S., Ford, R.G.: Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 38, 3197–3204 (2004)CrossRef Shevade, S., Ford, R.G.: Use of synthetic zeolites for arsenate removal from pollutant water. Water Res. 38, 3197–3204 (2004)CrossRef
69.
go back to reference Bostick, B.C., Fendorf, S.: Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 67, 909–921 (2003)CrossRef Bostick, B.C., Fendorf, S.: Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 67, 909–921 (2003)CrossRef
70.
go back to reference Bostick, B.C., Fendorf, S., Manning, B.A.: Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochim. Cosmochim. Acta 67, 895–907 (2003)CrossRef Bostick, B.C., Fendorf, S., Manning, B.A.: Arsenite adsorption on galena (PbS) and sphalerite (ZnS). Geochim. Cosmochim. Acta 67, 895–907 (2003)CrossRef
71.
go back to reference Ramirez-Muiz, K., Jia, F., Song, S.: Adsorption of AsV in aqueous solutions on porous hematite prepared by thermal modification of a siderite-goethite concentrate. Environ. Chem. 9, 512–520 (2012)CrossRef Ramirez-Muiz, K., Jia, F., Song, S.: Adsorption of AsV in aqueous solutions on porous hematite prepared by thermal modification of a siderite-goethite concentrate. Environ. Chem. 9, 512–520 (2012)CrossRef
72.
go back to reference Yang, X., Xia, L., Li, J., Dai, M., Yang, G., Song, S.: Adsorption of As(III) on porous hematite synthesized from goethite concentrate. Chemosphere 169 (2017) Yang, X., Xia, L., Li, J., Dai, M., Yang, G., Song, S.: Adsorption of As(III) on porous hematite synthesized from goethite concentrate. Chemosphere 169 (2017)
73.
go back to reference Dai, M., Xia, L., Song, S., Peng, C., Lopez-Valdivieso, A.: Adsorption of As(V) inside the pores of porous hematite in water. J. Hazard. Mater. 307, 312–317 (2016)CrossRef Dai, M., Xia, L., Song, S., Peng, C., Lopez-Valdivieso, A.: Adsorption of As(V) inside the pores of porous hematite in water. J. Hazard. Mater. 307, 312–317 (2016)CrossRef
74.
go back to reference Eguez, H.E., Cho, E.H.: Adsorption of arsenic on activated charcoal. J. Miner. Met. Mater. 39, 38–41 (1987)CrossRef Eguez, H.E., Cho, E.H.: Adsorption of arsenic on activated charcoal. J. Miner. Met. Mater. 39, 38–41 (1987)CrossRef
75.
go back to reference Minovic, T.Z., Gulicovski, J.J., Stoiljkovic, M.M., Jokic, B.M., Zivkovic, L.S., Matovic, B.Z., Babic, B.M.: Surface characterization of mesoporous carbon cryogel and its application in arsenic (III) adsorption from aqueous solutions. Micropor. Mesopor. Mat. 201, 271–276 (2015)CrossRef Minovic, T.Z., Gulicovski, J.J., Stoiljkovic, M.M., Jokic, B.M., Zivkovic, L.S., Matovic, B.Z., Babic, B.M.: Surface characterization of mesoporous carbon cryogel and its application in arsenic (III) adsorption from aqueous solutions. Micropor. Mesopor. Mat. 201, 271–276 (2015)CrossRef
76.
go back to reference Li, W.G., Gong, X.J., Wang, K., Zhang, X.R., Fan, W.B.: Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresour. Technol. 165, 166–173 (2014)CrossRef Li, W.G., Gong, X.J., Wang, K., Zhang, X.R., Fan, W.B.: Adsorption characteristics of arsenic from micro-polluted water by an innovative coal-based mesoporous activated carbon. Bioresour. Technol. 165, 166–173 (2014)CrossRef
77.
go back to reference Ja, Arcibar-Orozco, Josue, D.B., Rios-Hurtado, J.C., Rangel-Mendez, J.R.: Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem. Eng. J. 249, 201–209 (2014)CrossRef Ja, Arcibar-Orozco, Josue, D.B., Rios-Hurtado, J.C., Rangel-Mendez, J.R.: Influence of iron content, surface area and charge distribution in the arsenic removal by activated carbons. Chem. Eng. J. 249, 201–209 (2014)CrossRef
78.
go back to reference Wu, Z., Li, W., Webley, P.A., Zhao, D.: General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv. Mater. 24, 485–491 (2012)CrossRef Wu, Z., Li, W., Webley, P.A., Zhao, D.: General and controllable synthesis of novel mesoporous magnetic iron oxide@carbon encapsulates for efficient arsenic removal. Adv. Mater. 24, 485–491 (2012)CrossRef
79.
go back to reference Sigrist, M.E., Brusa, L., Beldomenico, H.R., Dosso, L., Tsendra, O.M., González, M.B., Pieck, C.L., Vera, C.R.: Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents. J. Environ. Chem. Eng. 2, 927–934 (2014)CrossRef Sigrist, M.E., Brusa, L., Beldomenico, H.R., Dosso, L., Tsendra, O.M., González, M.B., Pieck, C.L., Vera, C.R.: Influence of the iron content on the arsenic adsorption capacity of Fe/GAC adsorbents. J. Environ. Chem. Eng. 2, 927–934 (2014)CrossRef
80.
go back to reference Xu, Y.H., Nakajima, T., Ohki, A.: Adsorption and removal of arsenic (V) from drinking water by aluminum-loaded Shirasu-zeolite. J. Hazard. Mater. 92, 275–287 (2002)CrossRef Xu, Y.H., Nakajima, T., Ohki, A.: Adsorption and removal of arsenic (V) from drinking water by aluminum-loaded Shirasu-zeolite. J. Hazard. Mater. 92, 275–287 (2002)CrossRef
81.
go back to reference Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., Li, L.: Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 97–98, 17–23 (2014)CrossRef Ren, X., Zhang, Z., Luo, H., Hu, B., Dang, Z., Yang, C., Li, L.: Adsorption of arsenic on modified montmorillonite. Appl. Clay Sci. 97–98, 17–23 (2014)CrossRef
82.
go back to reference Simeonidis, K., Gkinis, T., Tresintsi, S., Martinez-Boubeta, C., Vourlias, G., Tsiaoussis, I., Stavropoulos, G., Mitrakas, M., Angelakeris, M.: Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem. Eng. J. 168, 1008–1015 (2011)CrossRef Simeonidis, K., Gkinis, T., Tresintsi, S., Martinez-Boubeta, C., Vourlias, G., Tsiaoussis, I., Stavropoulos, G., Mitrakas, M., Angelakeris, M.: Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem. Eng. J. 168, 1008–1015 (2011)CrossRef
83.
go back to reference Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I., Kim, K.S.: Removal 4, 3979–3986 (2010) Chandra, V., Park, J., Chun, Y., Lee, J.W., Hwang, I., Kim, K.S.: Removal 4, 3979–3986 (2010)
84.
go back to reference Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H., Daus, B.: Sorption of aqueous antimony and arsenic species onto akaganeite. J. Colloid Interf. Sci. 357, 460–465 (2011)CrossRef Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H., Daus, B.: Sorption of aqueous antimony and arsenic species onto akaganeite. J. Colloid Interf. Sci. 357, 460–465 (2011)CrossRef
85.
go back to reference Chen, W., Parette, R., Zou, J., Cannon, F.S., Dempsey, B.A.: Arsenic removal by iron-modified activated carbon. Water Res. 41, 1851–1858 (2007)CrossRef Chen, W., Parette, R., Zou, J., Cannon, F.S., Dempsey, B.A.: Arsenic removal by iron-modified activated carbon. Water Res. 41, 1851–1858 (2007)CrossRef
86.
go back to reference Manning, B.A., Fendorf, S.E., Goldberg, S.: Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32, 2383–2388 (1998)CrossRef Manning, B.A., Fendorf, S.E., Goldberg, S.: Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32, 2383–2388 (1998)CrossRef
87.
go back to reference Ren, Z., Zhang, G., Paul Chen, J.: Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J. Colloid Interf. Sci. 358, 230–237 (2011)CrossRef Ren, Z., Zhang, G., Paul Chen, J.: Adsorptive removal of arsenic from water by an iron-zirconium binary oxide adsorbent. J. Colloid Interf. Sci. 358, 230–237 (2011)CrossRef
88.
go back to reference Wei, Z., Liang, K., Wu, Y., Zou, Y., Zuo, J., Arriagada, D.C., Pan, Z., Hu, G.: The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface. J. Colloid Interf. Sci. 462, 252–259 (2016)CrossRef Wei, Z., Liang, K., Wu, Y., Zou, Y., Zuo, J., Arriagada, D.C., Pan, Z., Hu, G.: The effect of pH on the adsorption of arsenic(III) and arsenic(V) at the TiO2 anatase [101] surface. J. Colloid Interf. Sci. 462, 252–259 (2016)CrossRef
89.
go back to reference Yu, L., Ma, Y., Ong, C.N., Xie, J., Liu, Y.: Rapid adsorption removal of arsenate by hydrous cerium oxide-graphene composite. Rsc. Adv. 5, 64983–64990 (2015)CrossRef Yu, L., Ma, Y., Ong, C.N., Xie, J., Liu, Y.: Rapid adsorption removal of arsenate by hydrous cerium oxide-graphene composite. Rsc. Adv. 5, 64983–64990 (2015)CrossRef
90.
go back to reference Wilkie, J.A., Hering, J.G.: Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surf. A 107, 97–110 (1996)CrossRef Wilkie, J.A., Hering, J.G.: Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloid Surf. A 107, 97–110 (1996)CrossRef
91.
go back to reference Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., Bhattacharjee, S.: Removal of arsenic from ground water using low cost ferruginous manganese ore. Water Res. 36, 625–632 (2002)CrossRef Chakravarty, S., Dureja, V., Bhattacharyya, G., Maity, S., Bhattacharjee, S.: Removal of arsenic from ground water using low cost ferruginous manganese ore. Water Res. 36, 625–632 (2002)CrossRef
92.
go back to reference Mohapatra, M., Sahoo, S.K., Anand, S., Das, R.P.: Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J. Colloid Interf. Sci. 298, 6–12 (2006)CrossRef Mohapatra, M., Sahoo, S.K., Anand, S., Das, R.P.: Removal of As(V) by Cu(II)-, Ni(II)-, or Co(II)-doped goethite samples. J. Colloid Interf. Sci. 298, 6–12 (2006)CrossRef
93.
go back to reference Gao, Y., Mucci, A.: Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem. Geol. 199, 91–109 (2003)CrossRef Gao, Y., Mucci, A.: Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem. Geol. 199, 91–109 (2003)CrossRef
94.
go back to reference Weng, L., Van Riemsdijk, W.H., Hiemstra, T.: Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids. Geochim. Cosmochim. Acta 72, 5857–5870 (2008)CrossRef Weng, L., Van Riemsdijk, W.H., Hiemstra, T.: Cu2+ and Ca2+ adsorption to goethite in the presence of fulvic acids. Geochim. Cosmochim. Acta 72, 5857–5870 (2008)CrossRef
95.
go back to reference Xu, W., Wang, J., Wang, L., Sheng, G., Liu, J., Yu, H., Huang, X.J.: Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface- and structure-dependent properties. J. Hazard. Mater. 260, 498–507 (2013)CrossRef Xu, W., Wang, J., Wang, L., Sheng, G., Liu, J., Yu, H., Huang, X.J.: Enhanced arsenic removal from water by hierarchically porous CeO2-ZrO2 nanospheres: role of surface- and structure-dependent properties. J. Hazard. Mater. 260, 498–507 (2013)CrossRef
96.
go back to reference Kanematsu, M., Young, T.M., Fukushi, K., Green, P.G., Darby, J.L.: Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim. Cosmochim. Acta 106, 404–428 (2013)CrossRef Kanematsu, M., Young, T.M., Fukushi, K., Green, P.G., Darby, J.L.: Arsenic(III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim. Cosmochim. Acta 106, 404–428 (2013)CrossRef
97.
go back to reference Zhu, H., Jia, Y., Wu, X., Wang, H.: Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172, 1591–1596 (2009)CrossRef Zhu, H., Jia, Y., Wu, X., Wang, H.: Removal of arsenic from water by supported nano zero-valent iron on activated carbon. J. Hazard. Mater. 172, 1591–1596 (2009)CrossRef
98.
go back to reference Bagherifam, S., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W., Ma, J., Wang, Y.: Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: isotherms and kinetics. Appl. Clay Sci. 95, 119–125 (2014)CrossRef Bagherifam, S., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W., Ma, J., Wang, Y.: Evaluation of Zn-Al-SO4 layered double hydroxide for the removal of arsenite and arsenate from a simulated soil solution: isotherms and kinetics. Appl. Clay Sci. 95, 119–125 (2014)CrossRef
99.
go back to reference Pan, B., Li, Z., Zhang, Y., Xu, J., Chen, L., Dong, H., Zhang, W.: Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chem. Eng. J. 248, 290–296 (2014)CrossRef Pan, B., Li, Z., Zhang, Y., Xu, J., Chen, L., Dong, H., Zhang, W.: Acid and organic resistant nano-hydrated zirconium oxide (HZO)/polystyrene hybrid adsorbent for arsenic removal from water. Chem. Eng. J. 248, 290–296 (2014)CrossRef
100.
go back to reference Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D., Iglesias, M.: Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem. Eng. J. 243, 14–23 (2014)CrossRef Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D., Iglesias, M.: Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chem. Eng. J. 243, 14–23 (2014)CrossRef
101.
go back to reference Burns, P.E., Hyun, S., Lee, L.S., Murarka, I.: Characterizing As(III, V) adsorption by soils surrounding ash disposal facilities. Chemosphere 63, 1879–1891 (2006)CrossRef Burns, P.E., Hyun, S., Lee, L.S., Murarka, I.: Characterizing As(III, V) adsorption by soils surrounding ash disposal facilities. Chemosphere 63, 1879–1891 (2006)CrossRef
102.
go back to reference Grafe, M., Eick, M.J., Grossl, P.R., Saunders, A.M.: Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J. Environ. Qual. 31, 1115–1123 (2002)CrossRef Grafe, M., Eick, M.J., Grossl, P.R., Saunders, A.M.: Adsorption of arsenate and arsenite on ferrihydrite in the presence and absence of dissolved organic carbon. J. Environ. Qual. 31, 1115–1123 (2002)CrossRef
103.
go back to reference Grafe, M., Eick, M.J., Grossl, P.R.: Adsorption of Arsenate (V) and Arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci. Soc. Am. J. 65, 1680–1687 (2001)CrossRef Grafe, M., Eick, M.J., Grossl, P.R.: Adsorption of Arsenate (V) and Arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci. Soc. Am. J. 65, 1680–1687 (2001)CrossRef
104.
go back to reference Buschmann, J., Kappeler, A., Lindauer, U., Kistler, D., Berg, M., Sigg, L.: Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid and aluminum. Environ. Sci. Technol. 40, 6015–6020 (2006)CrossRef Buschmann, J., Kappeler, A., Lindauer, U., Kistler, D., Berg, M., Sigg, L.: Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid and aluminum. Environ. Sci. Technol. 40, 6015–6020 (2006)CrossRef
105.
go back to reference Liu, T., Tsang, D.C.W., Lo, I.M.C.: Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ. Sci. Technol. 42, 2092–2098 (2008)CrossRef Liu, T., Tsang, D.C.W., Lo, I.M.C.: Chromium(VI) reduction kinetics by zero-valent iron in moderately hard water with humic acid: iron dissolution and humic acid adsorption. Environ. Sci. Technol. 42, 2092–2098 (2008)CrossRef
106.
go back to reference Jain, A., Loeppert, R.H.: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 29, 1422–1430 (2000)CrossRef Jain, A., Loeppert, R.H.: Effect of competing anions on the adsorption of arsenate and arsenite by ferrihydrite. J. Environ. Qual. 29, 1422–1430 (2000)CrossRef
107.
go back to reference Zhang, G., Ren, Z., Zhang, X., Chen, J.: Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 47, 4022–4031 (2013)CrossRef Zhang, G., Ren, Z., Zhang, X., Chen, J.: Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res. 47, 4022–4031 (2013)CrossRef
108.
go back to reference Yang, W., Kan, A.T., Chen, W., Tomson, M.B.: PH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles. Water Res. 44, 5693–5701 (2010)CrossRef Yang, W., Kan, A.T., Chen, W., Tomson, M.B.: PH-dependent effect of zinc on arsenic adsorption to magnetite nanoparticles. Water Res. 44, 5693–5701 (2010)CrossRef
109.
go back to reference Bang, S., Korfiatis, G.P., Meng, X.: Removal of arsenic from water by zero-valent iron. J. Hazard. Mater. 121, 61–67 (2005)CrossRef Bang, S., Korfiatis, G.P., Meng, X.: Removal of arsenic from water by zero-valent iron. J. Hazard. Mater. 121, 61–67 (2005)CrossRef
110.
go back to reference Jais, F.M., Ibrahim, S., Yoon, Y., Jang, M.: Enhanced arsenate removal by lanthanum and nano-magnetite composite incorporated palm shell waste-based activated carbon. Sep. Purif. Technol. 169, 93–102 (2016)CrossRef Jais, F.M., Ibrahim, S., Yoon, Y., Jang, M.: Enhanced arsenate removal by lanthanum and nano-magnetite composite incorporated palm shell waste-based activated carbon. Sep. Purif. Technol. 169, 93–102 (2016)CrossRef
111.
go back to reference M-BRKHG-KMHMS, S.J.: Evaluation of some natural zeolites and their relevant synthetic types as sorbents for removal of arsenic from drinking water. TT. Iran. Public Health 33, 36–44 (2004) M-BRKHG-KMHMS, S.J.: Evaluation of some natural zeolites and their relevant synthetic types as sorbents for removal of arsenic from drinking water. TT. Iran. Public Health 33, 36–44 (2004)
112.
go back to reference Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., Brown, G.E.: EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol. 39, 9147–9155 (2005)CrossRef Ona-Nguema, G., Morin, G., Juillot, F., Calas, G., Brown, G.E.: EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol. 39, 9147–9155 (2005)CrossRef
113.
go back to reference Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L.: Arsenate and chromate retention mechanisms on goethite. 1 Surface structure. Environ. Sci. Technol. 31, 315–320 (1997)CrossRef Fendorf, S., Eick, M.J., Grossl, P., Sparks, D.L.: Arsenate and chromate retention mechanisms on goethite. 1 Surface structure. Environ. Sci. Technol. 31, 315–320 (1997)CrossRef
114.
go back to reference Waychunas, G.A., Rea, B.A., Fuller, C.C., Davis, J.A.: Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251–2269 (1993)CrossRef Waychunas, G.A., Rea, B.A., Fuller, C.C., Davis, J.A.: Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim. Cosmochim. Acta 57, 2251–2269 (1993)CrossRef
115.
go back to reference Sherman, D.M., Randall, S.R.: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Ac 67, 4223–4230 (2003)CrossRef Sherman, D.M., Randall, S.R.: Surface complexation of arsenic(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Ac 67, 4223–4230 (2003)CrossRef
116.
go back to reference Müller, K., Ciminelli, V.S.T., Dantas, M.S.S., Willscher, S.: A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res. 44, 5660–5672 (2010)CrossRef Müller, K., Ciminelli, V.S.T., Dantas, M.S.S., Willscher, S.: A comparative study of As(III) and As(V) in aqueous solutions and adsorbed on iron oxy-hydroxides by Raman spectroscopy. Water Res. 44, 5660–5672 (2010)CrossRef
117.
go back to reference Manuscript, A., Cytokines, P.P.: Transplantation, arsenite oxidation by a poorly-cystalline manganese oxide. Environ. Sci. Technol. 44, 1–14 (2010) Manuscript, A., Cytokines, P.P.: Transplantation, arsenite oxidation by a poorly-cystalline manganese oxide. Environ. Sci. Technol. 44, 1–14 (2010)
118.
go back to reference Jönsson, J., Sherman, D.M.: Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: implications for arsenic release in anoxic groundwaters. Chem. Geol. 255, 173–181 (2008)CrossRef Jönsson, J., Sherman, D.M.: Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: implications for arsenic release in anoxic groundwaters. Chem. Geol. 255, 173–181 (2008)CrossRef
119.
go back to reference JiaY, XuL, Fang, Z., Demopoulos, G.P.: Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 40, 3248–3253 (2006)CrossRef JiaY, XuL, Fang, Z., Demopoulos, G.P.: Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 40, 3248–3253 (2006)CrossRef
120.
go back to reference Wang, X., Demopoulos, G.P., Jia, Y.: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta 71, 1643–1654 (2007)CrossRef Wang, X., Demopoulos, G.P., Jia, Y.: Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochim. Cosmochim. Acta 71, 1643–1654 (2007)CrossRef
121.
go back to reference Silva, G.C., Almeida, F.S., Dantas, M.S.S., Ferreira, A.M., Ciminelli, V.S.T.: Raman and IR spectroscopic investigation of As adsorbed on Mn3O4 magnetic composites. Spectrochim. Acta A Mol. Biomol. Spectro. 100, 161–165 (2013)CrossRef Silva, G.C., Almeida, F.S., Dantas, M.S.S., Ferreira, A.M., Ciminelli, V.S.T.: Raman and IR spectroscopic investigation of As adsorbed on Mn3O4 magnetic composites. Spectrochim. Acta A Mol. Biomol. Spectro. 100, 161–165 (2013)CrossRef
122.
go back to reference Tournassat, C., Charlet, L., Bosbach, D., Manceau, A.: Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environ. Sci. Technol. 36, 493–500 (2002)CrossRef Tournassat, C., Charlet, L., Bosbach, D., Manceau, A.: Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environ. Sci. Technol. 36, 493–500 (2002)CrossRef
123.
go back to reference Tokunaga, S., Wasay, S.A., Park, S.W.: Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds. Water Sci. Technol. 35, 71–78 (1997)CrossRef Tokunaga, S., Wasay, S.A., Park, S.W.: Removal of arsenic(V) ion from aqueous solutions by lanthanum compounds. Water Sci. Technol. 35, 71–78 (1997)CrossRef
124.
go back to reference Gräfe, M., Nachtegaal, M., Sparks, D.L.: Formation of metal-arsenate precipitates at the goethite-water interface. Environ. Sci. Technol. 38, 6561–6570 (2004)CrossRef Gräfe, M., Nachtegaal, M., Sparks, D.L.: Formation of metal-arsenate precipitates at the goethite-water interface. Environ. Sci. Technol. 38, 6561–6570 (2004)CrossRef
125.
go back to reference Su, J., Huang, H.G., Jin, X.Y., Lu, X.Q., Chen, Z.L.: Synthesis characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution. J. Hazard. Mater. 185, 63–70 (2011)CrossRef Su, J., Huang, H.G., Jin, X.Y., Lu, X.Q., Chen, Z.L.: Synthesis characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution. J. Hazard. Mater. 185, 63–70 (2011)CrossRef
126.
go back to reference Tu, Y.J., You, C.F.: Phosphorus adsorption onto green synthesized nano-bimetal ferrites: Equilibrium, kinetic and thermodynamic investigation. Chem. Eng. J. 251, 285–292 (2014)CrossRef Tu, Y.J., You, C.F.: Phosphorus adsorption onto green synthesized nano-bimetal ferrites: Equilibrium, kinetic and thermodynamic investigation. Chem. Eng. J. 251, 285–292 (2014)CrossRef
127.
go back to reference USEPA Ecological restoration: a tool to manage stream quality, Rep EPA 841–F–95–007 pp. 1–2 (1995) USEPA Ecological restoration: a tool to manage stream quality, Rep EPA 841–F–95–007 pp. 1–2 (1995)
128.
go back to reference Mueller, D.K., Helsel, D.R., Kidd, M.A.: Nutrients in the nation’s waters: too much of a good thing? US Government (1996) Mueller, D.K., Helsel, D.R., Kidd, M.A.: Nutrients in the nation’s waters: too much of a good thing? US Government (1996)
129.
go back to reference Fertilizer, S., Sengupta, S., Pandit, A.: Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res. 45, 3318–3330 (2011)CrossRef Fertilizer, S., Sengupta, S., Pandit, A.: Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer. Water Res. 45, 3318–3330 (2011)CrossRef
130.
go back to reference Yin, H., Yun, Y., Zhang, Y., Fan, C.: Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. J. Hazard. Mater. 198, 362–369 (2011)CrossRef Yin, H., Yun, Y., Zhang, Y., Fan, C.: Phosphate removal from wastewaters by a naturally occurring, calcium-rich sepiolite. J. Hazard. Mater. 198, 362–369 (2011)CrossRef
131.
go back to reference Li, S., Liu, W., Gu, S., Cheng, X., Xu, Z., Zhang, Q.: Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J. Hazard. Mater. 162, 1340–1346 (2009)CrossRef Li, S., Liu, W., Gu, S., Cheng, X., Xu, Z., Zhang, Q.: Spatio-temporal dynamics of nutrients in the upper Han River basin, China. J. Hazard. Mater. 162, 1340–1346 (2009)CrossRef
132.
go back to reference Smith, G.T.D., Szabo, A.S., Takács, I., Murthy, S.: Phosphate complexation model and its implications for chemical phosphorus removal. Water Environ. Res. 80, 633–646 (2008)CrossRef Smith, G.T.D., Szabo, A.S., Takács, I., Murthy, S.: Phosphate complexation model and its implications for chemical phosphorus removal. Water Environ. Res. 80, 633–646 (2008)CrossRef
133.
go back to reference Mao, Y., Ninh Pham, A., Xin, Y., David Waite, T.: Effects of pH, floc age and organic compounds on the removal of phosphate by pre-polymerized hydrous ferric oxides. Sep. Purif. Technol. 91, 38–45 (2012)CrossRef Mao, Y., Ninh Pham, A., Xin, Y., David Waite, T.: Effects of pH, floc age and organic compounds on the removal of phosphate by pre-polymerized hydrous ferric oxides. Sep. Purif. Technol. 91, 38–45 (2012)CrossRef
134.
go back to reference Conidi, D., Parker, W.J.: The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc. Water Res. 84, 323–332 (2015)CrossRef Conidi, D., Parker, W.J.: The effect of solids residence time on phosphorus adsorption to hydrous ferric oxide floc. Water Res. 84, 323–332 (2015)CrossRef
135.
go back to reference Kang, S., Choo, K., Lim, K.: Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent. Sep. Sci. Technol. 38, 3853–3874 (2003)CrossRef Kang, S., Choo, K., Lim, K.: Use of iron oxide particles as adsorbents to enhance phosphorus removal from secondary wastewater effluent. Sep. Sci. Technol. 38, 3853–3874 (2003)CrossRef
136.
go back to reference Wang, X., Liu, F., Tan, W., Li, W., Feng, X., Sparks, D.L.: Characteristics of phosphate adsorption-desorption onto ferrihydrite. Soil Sci. 178, 1–11 (2013)CrossRef Wang, X., Liu, F., Tan, W., Li, W., Feng, X., Sparks, D.L.: Characteristics of phosphate adsorption-desorption onto ferrihydrite. Soil Sci. 178, 1–11 (2013)CrossRef
137.
go back to reference Torrent, J., Barron, V., Schwertmann, U.: Phosphate adsorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990)CrossRef Torrent, J., Barron, V., Schwertmann, U.: Phosphate adsorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 54, 1007–1012 (1990)CrossRef
138.
go back to reference Barron, V., Herruzo, M., Torrent, J.: Phosphate adsorption by aluminous hematites of different shapes. Soil Sci. Soc. Am. J. 52, 647 (1988)CrossRef Barron, V., Herruzo, M., Torrent, J.: Phosphate adsorption by aluminous hematites of different shapes. Soil Sci. Soc. Am. J. 52, 647 (1988)CrossRef
139.
go back to reference Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., Hirotsu, T.: Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interf. Sci. 298, 602–608 (2006)CrossRef Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., Hirotsu, T.: Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interf. Sci. 298, 602–608 (2006)CrossRef
140.
go back to reference Dimirkou, A., Ioannou, A., Doula, M.: Preparation characterization and sorption properties for phosphates of hematite, bentonite and bentonite-hematite systems. Adv. Colloid Interf. Sci. 97, 37–61 (2002)CrossRef Dimirkou, A., Ioannou, A., Doula, M.: Preparation characterization and sorption properties for phosphates of hematite, bentonite and bentonite-hematite systems. Adv. Colloid Interf. Sci. 97, 37–61 (2002)CrossRef
141.
go back to reference Daou, T.J., Begin-Colin, S., Grenèche, J.M., Thomas, F., Derory, A., Bernhardt, P., Legaré, P., Pourroy, G.: Phosphate adsorption properties of magnetite-based nanoparticles. Chem. Mater. 19, 4494–4505 (2007)CrossRef Daou, T.J., Begin-Colin, S., Grenèche, J.M., Thomas, F., Derory, A., Bernhardt, P., Legaré, P., Pourroy, G.: Phosphate adsorption properties of magnetite-based nanoparticles. Chem. Mater. 19, 4494–4505 (2007)CrossRef
142.
go back to reference Yoon, S.Y., Lee, C.G., Park, J.A., Kim, J.H., Kim, S.B., Lee, S.H., Choi, J.W.: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem. Eng. J. 236, 341–347 (2014)CrossRef Yoon, S.Y., Lee, C.G., Park, J.A., Kim, J.H., Kim, S.B., Lee, S.H., Choi, J.W.: Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chem. Eng. J. 236, 341–347 (2014)CrossRef
143.
go back to reference Altundoan, H.S., Tmen, F.: Removal of phosphates from aqueous solutions by using bauxite. I: Effect of pH on the adsorption of various phosphates. J. Chem. Technol. Biotechnol. 77, 77–85 (2002)CrossRef Altundoan, H.S., Tmen, F.: Removal of phosphates from aqueous solutions by using bauxite. I: Effect of pH on the adsorption of various phosphates. J. Chem. Technol. Biotechnol. 77, 77–85 (2002)CrossRef
144.
go back to reference Altundoǧan, H.S., Tümen, F.: Removal of phosphates from aqueous solutions by using bauxite II: the activation study. J. Chem. Technol. Biot. 78, 824–833 (2003)CrossRef Altundoǧan, H.S., Tümen, F.: Removal of phosphates from aqueous solutions by using bauxite II: the activation study. J. Chem. Technol. Biot. 78, 824–833 (2003)CrossRef
145.
go back to reference Rajan, S.S.S.: Changes in net surface charge of hydrous alumina with phosphate adsorption. Nature 262, 45–46 (1976)CrossRef Rajan, S.S.S.: Changes in net surface charge of hydrous alumina with phosphate adsorption. Nature 262, 45–46 (1976)CrossRef
146.
go back to reference Rajan, S.S.S.: Adsorption of divalent phosphate on hydrous aluminum-oxide. Nature 253, 434 (1975)CrossRef Rajan, S.S.S.: Adsorption of divalent phosphate on hydrous aluminum-oxide. Nature 253, 434 (1975)CrossRef
147.
go back to reference Li, W., Feng, J., Kwon, K.D., Kubicki, J.D., Phillips, B.L.: Surface speciation of phosphate on Boehmite (γ-AlOOH) determined from NMR spectroscopy. Langmuir 26, 4753–4761 (2010)CrossRef Li, W., Feng, J., Kwon, K.D., Kubicki, J.D., Phillips, B.L.: Surface speciation of phosphate on Boehmite (γ-AlOOH) determined from NMR spectroscopy. Langmuir 26, 4753–4761 (2010)CrossRef
148.
go back to reference Kuo, S., Lotse, G.: Kinetics of phosphate adsorption and desorption by hematite and gibbsite. Soil Sci. 116, 400–406 (1974)CrossRef Kuo, S., Lotse, G.: Kinetics of phosphate adsorption and desorption by hematite and gibbsite. Soil Sci. 116, 400–406 (1974)CrossRef
149.
go back to reference Özacar, M.: Adsorption of phosphate from aqueous solution onto alunite. Chemosphere 51, 321–327 (2003)CrossRef Özacar, M.: Adsorption of phosphate from aqueous solution onto alunite. Chemosphere 51, 321–327 (2003)CrossRef
150.
go back to reference Özacar, M.: Equilibrium and kinetic modelling of adsorption of phosphorus on calcined alunite. Adsorpt. Sci. Technol. 9, 125–132 (2003)CrossRef Özacar, M.: Equilibrium and kinetic modelling of adsorption of phosphorus on calcined alunite. Adsorpt. Sci. Technol. 9, 125–132 (2003)CrossRef
151.
go back to reference Ye, H., Chen, F., Sheng, Y., Sheng, G., Fu, J.: Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep. Purif. Technol. 50, 283–290 (2006)CrossRef Ye, H., Chen, F., Sheng, Y., Sheng, G., Fu, J.: Adsorption of phosphate from aqueous solution onto modified palygorskites. Sep. Purif. Technol. 50, 283–290 (2006)CrossRef
152.
go back to reference Bellier, N., Chazarenc, F., Comeau, Y.: Phosphorus removal from wastewater by mineral apatite. Water Res. 40, 2965–2971 (2006)CrossRef Bellier, N., Chazarenc, F., Comeau, Y.: Phosphorus removal from wastewater by mineral apatite. Water Res. 40, 2965–2971 (2006)CrossRef
153.
go back to reference Molle, P., Liénard, A., Grasmick, A., Iwema, A., Kabbabi, A.: Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands. Water Sci. Technol. 51, 193–203 (2005)CrossRef Molle, P., Liénard, A., Grasmick, A., Iwema, A., Kabbabi, A.: Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands. Water Sci. Technol. 51, 193–203 (2005)CrossRef
154.
go back to reference Sposito, G.: The Surface Chemistry of Solids. Oxford University Press (1984) Sposito, G.: The Surface Chemistry of Solids. Oxford University Press (1984)
155.
go back to reference Liu, Y., Sheng, X., Dong, Y., Ma, Y.: Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination 289, 66–71 (2012)CrossRef Liu, Y., Sheng, X., Dong, Y., Ma, Y.: Removal of high-concentration phosphate by calcite: effect of sulfate and pH. Desalination 289, 66–71 (2012)CrossRef
156.
go back to reference Karageorgiou, K., Paschalis, M., Anastassakis, G.N.: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J. Hazard. Mater. 139(2007), 447–452 (2007)CrossRef Karageorgiou, K., Paschalis, M., Anastassakis, G.N.: Removal of phosphate species from solution by adsorption onto calcite used as natural adsorbent. J. Hazard. Mater. 139(2007), 447–452 (2007)CrossRef
157.
go back to reference Zhou, K., Wu, B., Su, L., Gao, X., Chai, X., Dai, X.: Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chem. Eng. J. 328, 35–43 (2017)CrossRef Zhou, K., Wu, B., Su, L., Gao, X., Chai, X., Dai, X.: Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chem. Eng. J. 328, 35–43 (2017)CrossRef
158.
go back to reference Yao, W., Millero, F.J.: Adsorption of phophate on manganese dioxide in seawater. Environ. Sci. Technol. 30, 536–541 (1996)CrossRef Yao, W., Millero, F.J.: Adsorption of phophate on manganese dioxide in seawater. Environ. Sci. Technol. 30, 536–541 (1996)CrossRef
159.
go back to reference Su, Y., Cui, H., Li, Q., Gao, S., Ku, J.: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res. 7, 1–9 (2013) Su, Y., Cui, H., Li, Q., Gao, S., Ku, J.: Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles. Water Res. 7, 1–9 (2013)
160.
go back to reference Liu, H.L., Sun, X.F., Yin, C.G., Hu, C.: Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151, 616–622 (2008)CrossRef Liu, H.L., Sun, X.F., Yin, C.G., Hu, C.: Removal of phosphate by mesoporous ZrO2. J. Hazard. Mater. 151, 616–622 (2008)CrossRef
161.
go back to reference Xie, J., Lin, Y., Li, C., Wu, D., Kong, H.: Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technol. 269, 351–357 (2014)CrossRef Xie, J., Lin, Y., Li, C., Wu, D., Kong, H.: Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technol. 269, 351–357 (2014)CrossRef
162.
go back to reference Yang, J., Zeng, Q., Peng, L., Lei, M., Song, H., Tie, B., Gu, J.: La-EDTA coated Fe3O4 nanomaterial: preparation and application in removal of phosphate from water. J. Environ. Sci. (China) 25, 413–418 (2013) Yang, J., Zeng, Q., Peng, L., Lei, M., Song, H., Tie, B., Gu, J.: La-EDTA coated Fe3O4 nanomaterial: preparation and application in removal of phosphate from water. J. Environ. Sci. (China) 25, 413–418 (2013)
163.
go back to reference Bar-Yosef, B., Rosenberg, R., Kafkafi, U., Sposito, G.: Phosphorus adsorption by kaolinite and montmorillonite: I. effect of time, ionic strength, and pH. Soil Sci. Soc. Am. J. 52, 1580 (1988) Bar-Yosef, B., Rosenberg, R., Kafkafi, U., Sposito, G.: Phosphorus adsorption by kaolinite and montmorillonite: I. effect of time, ionic strength, and pH. Soil Sci. Soc. Am. J. 52, 1580 (1988)
164.
go back to reference Kafkafi, U., Bar-Yosef, B., Rosenberg, R., Sposito, G.: Phosphorus adsorption by kaolinite and montmorillonite: II. Organic anion competition. Soil Sci. Soc. Am. J. 52, 1585 (1988) Kafkafi, U., Bar-Yosef, B., Rosenberg, R., Sposito, G.: Phosphorus adsorption by kaolinite and montmorillonite: II. Organic anion competition. Soil Sci. Soc. Am. J. 52, 1585 (1988)
165.
go back to reference Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., Zacharias, I.: Removal of phosphate from natural waters using innovative modified bentonites (2012) Zamparas, M., Gianni, A., Stathi, P., Deligiannakis, Y., Zacharias, I.: Removal of phosphate from natural waters using innovative modified bentonites (2012)
166.
go back to reference Yan, L.G., Xu, Y.Y., Yu, H.Q., Xin, X.D., Wei, Q., Du, B.: Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J. Hazard. Mater. 179, 244–250 (2010)CrossRef Yan, L.G., Xu, Y.Y., Yu, H.Q., Xin, X.D., Wei, Q., Du, B.: Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. J. Hazard. Mater. 179, 244–250 (2010)CrossRef
167.
go back to reference Karapinar, N.: Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. J. Hazard. Mater. 170, 1186–1191 (2009)CrossRef Karapinar, N.: Application of natural zeolite for phosphorus and ammonium removal from aqueous solutions. J. Hazard. Mater. 170, 1186–1191 (2009)CrossRef
168.
go back to reference Jiang, C., Jia, L., He, Y., Zhang, B., Kirumba, G., Xie, J.: Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite. J. Colloid Interf. Sci. 402, 246–252 (2013)CrossRef Jiang, C., Jia, L., He, Y., Zhang, B., Kirumba, G., Xie, J.: Adsorptive removal of phosphorus from aqueous solution using sponge iron and zeolite. J. Colloid Interf. Sci. 402, 246–252 (2013)CrossRef
169.
go back to reference Arias, C.A., Del Bubba, M., Brix, H.: Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 35, 1159–1168 (2001)CrossRef Arias, C.A., Del Bubba, M., Brix, H.: Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 35, 1159–1168 (2001)CrossRef
170.
go back to reference Del Bubba, M., Arias, C.A., Brix, H.: Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 37, 3390–3400 (2003)CrossRef Del Bubba, M., Arias, C.A., Brix, H.: Phosphorus adsorption maximum of sands for use as media in subsurface flow constructed reed beds as measured by the Langmuir isotherm. Water Res. 37, 3390–3400 (2003)CrossRef
171.
go back to reference Gerritse, R.G.: Prediction of travel times of phosphate in soils at a disposal site for wastewater. Water Res. 27, 263–267 (1993)CrossRef Gerritse, R.G.: Prediction of travel times of phosphate in soils at a disposal site for wastewater. Water Res. 27, 263–267 (1993)CrossRef
172.
go back to reference Liu, H., Chen, T., Chang, J., Zou, X., Frost, R.L.: The effect of hydroxyl groups and surface area of hematite derived from annealing goethite for phosphate removal. J. Colloid Interf. Sci. 398, 88–94 (2013)CrossRef Liu, H., Chen, T., Chang, J., Zou, X., Frost, R.L.: The effect of hydroxyl groups and surface area of hematite derived from annealing goethite for phosphate removal. J. Colloid Interf. Sci. 398, 88–94 (2013)CrossRef
173.
go back to reference Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J., Jia, Z.: Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J. Hazard. Mater. 137, 374–383 (2006)CrossRef Li, Y., Liu, C., Luan, Z., Peng, X., Zhu, C., Chen, Z., Zhang, Z., Fan, J., Jia, Z.: Phosphate removal from aqueous solutions using raw and activated red mud and fly ash. J. Hazard. Mater. 137, 374–383 (2006)CrossRef
174.
go back to reference Zach-Maor, A., Semiat, R., Shemer, H.: Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions. J. Colloid Interf. Sci. 363, 608–614 (2011)CrossRef Zach-Maor, A., Semiat, R., Shemer, H.: Adsorption-desorption mechanism of phosphate by immobilized nano-sized magnetite layer: interface and bulk interactions. J. Colloid Interf. Sci. 363, 608–614 (2011)CrossRef
175.
go back to reference Lai, L., Xie, Q., Chi, L., Gu, W., Wu, D.: Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J. Colloid Interf. Sci. 465, 76–82 (2016)CrossRef Lai, L., Xie, Q., Chi, L., Gu, W., Wu, D.: Adsorption of phosphate from water by easily separable Fe3O4@SiO2 core/shell magnetic nanoparticles functionalized with hydrous lanthanum oxide. J. Colloid Interf. Sci. 465, 76–82 (2016)CrossRef
176.
go back to reference Pan, B., Han, F., Nie, G., Wu, B., He, K., Lu, L.: New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ. Sci. Technol. 48, 5101–5107 (2014)CrossRef Pan, B., Han, F., Nie, G., Wu, B., He, K., Lu, L.: New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ. Sci. Technol. 48, 5101–5107 (2014)CrossRef
177.
go back to reference Boujelben, N., Bouzid, J., Elouear, Z., Feki, M., Jamoussi, F., Montiel, A.: Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. J. Hazard. Mater. 151, 103–110 (2008)CrossRef Boujelben, N., Bouzid, J., Elouear, Z., Feki, M., Jamoussi, F., Montiel, A.: Phosphorus removal from aqueous solution using iron coated natural and engineered sorbents. J. Hazard. Mater. 151, 103–110 (2008)CrossRef
178.
go back to reference Stanforth, R.: Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol. 35, 4753–4757 (2001)CrossRef Stanforth, R.: Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol. 35, 4753–4757 (2001)CrossRef
179.
go back to reference Borggaard, O.K., Raben-Lange, B., Gimsing, A.L., Strobel, B.W.: Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127, 270–279 (2005)CrossRef Borggaard, O.K., Raben-Lange, B., Gimsing, A.L., Strobel, B.W.: Influence of humic substances on phosphate adsorption by aluminium and iron oxides. Geoderma 127, 270–279 (2005)CrossRef
180.
go back to reference Yan, J., Jiang, T., Yao, Y., Lu, S., Wang, Q., Wei, S.: Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. J. Environ. Sci(China) 42, 152–162 (2016) Yan, J., Jiang, T., Yao, Y., Lu, S., Wang, Q., Wei, S.: Preliminary investigation of phosphorus adsorption onto two types of iron oxide-organic matter complexes. J. Environ. Sci(China) 42, 152–162 (2016)
181.
go back to reference Almeelbi, T., Bezbaruah, A.: Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res., 14 (2012) Almeelbi, T., Bezbaruah, A.: Aqueous phosphate removal using nanoscale zero-valent iron. J. Nanopart. Res., 14 (2012)
182.
go back to reference Chen, N., Feng, C., Zhang, Z., Liu, R., Gao, Y., Li, M., Sugiura, N.: Preparation and characterization of lanthanum(III) loaded granular ceramic for phosphorus adsorption from aqueous solution. J. Taiwan Inst. Chem. E 43, 83–789 (2012)CrossRef Chen, N., Feng, C., Zhang, Z., Liu, R., Gao, Y., Li, M., Sugiura, N.: Preparation and characterization of lanthanum(III) loaded granular ceramic for phosphorus adsorption from aqueous solution. J. Taiwan Inst. Chem. E 43, 83–789 (2012)CrossRef
183.
go back to reference Goldberg, S., Sposito, G.: On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: a review. Commun. Soil Sci. Plant Anal. 16, 801–821 (1985)CrossRef Goldberg, S., Sposito, G.: On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: a review. Commun. Soil Sci. Plant Anal. 16, 801–821 (1985)CrossRef
184.
go back to reference Arai, Y., Sparks, D.L.: ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J. Colloid Interf. Sci. 241, 317–326 (2001)CrossRef Arai, Y., Sparks, D.L.: ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J. Colloid Interf. Sci. 241, 317–326 (2001)CrossRef
185.
go back to reference Tejedor-Tejedor, M.I., Anderson, M.A.: Protonation of phosphate on the surface of goethite as studied by cir-ftir and electrophoretic mobility. Langmuir 6, 602–611 (1990)CrossRef Tejedor-Tejedor, M.I., Anderson, M.A.: Protonation of phosphate on the surface of goethite as studied by cir-ftir and electrophoretic mobility. Langmuir 6, 602–611 (1990)CrossRef
186.
go back to reference Wu, L., Forsling, W., Holmgren, A.: Surface complexation of calcium minerals in aqueous solution. J. Colloid Interf. Sci. 224, 211–218 (2000)CrossRef Wu, L., Forsling, W., Holmgren, A.: Surface complexation of calcium minerals in aqueous solution. J. Colloid Interf. Sci. 224, 211–218 (2000)CrossRef
187.
go back to reference Somasundaran, P.: Zeta potential of apatite in aqueous solutions and its change during equilibration. J. Colloid Interf. Sci. 27, 659–666 (1968)CrossRef Somasundaran, P.: Zeta potential of apatite in aqueous solutions and its change during equilibration. J. Colloid Interf. Sci. 27, 659–666 (1968)CrossRef
188.
go back to reference Yan, J., Jiang, T., Yao, Y., Wang, J., Cai, Y., Green, N.W., Wei, S.: Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide–natural organic matter complexes. J. Environ. Sci. (China) 55, 197–205 (2017) Yan, J., Jiang, T., Yao, Y., Wang, J., Cai, Y., Green, N.W., Wei, S.: Underestimation of phosphorus fraction change in the supernatant after phosphorus adsorption onto iron oxides and iron oxide–natural organic matter complexes. J. Environ. Sci. (China) 55, 197–205 (2017)
189.
go back to reference Pratt, C., Shilton, A., Pratt, S., Haverkamp, R.G., Bolan, N.S.: Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent. Environ. Sci. Technol. 41, 3296–3301 (2007)CrossRef Pratt, C., Shilton, A., Pratt, S., Haverkamp, R.G., Bolan, N.S.: Phosphorus removal mechanisms in active slag filters treating waste stabilization pond effluent. Environ. Sci. Technol. 41, 3296–3301 (2007)CrossRef
190.
go back to reference Van Emmerik, T.J., Sandström, D.E., Antzutkin, O.N., Angove, M.J., Johnson, B.B.: 31P solid-state nuclear magnetic resonance study of the sorption of phosphate onto gibbsite and kaolinite. Langmuir 23, 3205–3213 (2007)CrossRef Van Emmerik, T.J., Sandström, D.E., Antzutkin, O.N., Angove, M.J., Johnson, B.B.: 31P solid-state nuclear magnetic resonance study of the sorption of phosphate onto gibbsite and kaolinite. Langmuir 23, 3205–3213 (2007)CrossRef
191.
go back to reference Del Nero, M., Galindo, C., Barillon, R., Halter, E., Madé, B.: Surface reactivity of α-Al2O3 and mechanisms of phosphate sorption: in situ ATR-FTIR spectroscopy and ζ potential studies. J. Colloid Interf. Sci. 342, 437–444 (2010)CrossRef Del Nero, M., Galindo, C., Barillon, R., Halter, E., Madé, B.: Surface reactivity of α-Al2O3 and mechanisms of phosphate sorption: in situ ATR-FTIR spectroscopy and ζ potential studies. J. Colloid Interf. Sci. 342, 437–444 (2010)CrossRef
192.
go back to reference Lounici, H., Addour, L., Belhocine, D., Grib, H., Nicolas, S., Bariou, B., Mameri, N.: Study of a new technique for fluoride removal from water. Desalination 114, 241–251 (1997)CrossRef Lounici, H., Addour, L., Belhocine, D., Grib, H., Nicolas, S., Bariou, B., Mameri, N.: Study of a new technique for fluoride removal from water. Desalination 114, 241–251 (1997)CrossRef
193.
go back to reference Mahramanlioglu, M., Kizilcikli, I., Bicer, I.O.: Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J. Fluor. Chem. 115, 41–47 (2002)CrossRef Mahramanlioglu, M., Kizilcikli, I., Bicer, I.O.: Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth. J. Fluor. Chem. 115, 41–47 (2002)CrossRef
194.
go back to reference Islam, M., Patel, R.: Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem. Eng. J. 169, 68–77 (2011)CrossRef Islam, M., Patel, R.: Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem. Eng. J. 169, 68–77 (2011)CrossRef
195.
go back to reference Harrison, P.T.C.: Fluoride in water: a UK perspective. J. Fluor. Chem. 126, 1448–1456 (2005)CrossRef Harrison, P.T.C.: Fluoride in water: a UK perspective. J. Fluor. Chem. 126, 1448–1456 (2005)CrossRef
196.
go back to reference Gorchev, H.G., Ozolins, G.: Guidelines for drinking-water quality, B World Health Organ (2004) Gorchev, H.G., Ozolins, G.: Guidelines for drinking-water quality, B World Health Organ (2004)
197.
go back to reference Chernet, T., Travi, Y., Valles, V.: Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian Rift Valley. Water Res. 35, 2819–2832 (2001)CrossRef Chernet, T., Travi, Y., Valles, V.: Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian Rift Valley. Water Res. 35, 2819–2832 (2001)CrossRef
198.
go back to reference Amor, Z., Malki, S., Taky, M., Bariou, B., Mameri, N., Elmidaoui, A.: Optimization of fluoride removal from brackish water by electrodialysis. Desalination 120, 263–271 (1998)CrossRef Amor, Z., Malki, S., Taky, M., Bariou, B., Mameri, N., Elmidaoui, A.: Optimization of fluoride removal from brackish water by electrodialysis. Desalination 120, 263–271 (1998)CrossRef
199.
go back to reference Hasany, S.M., Chaudhary, M.H.: Sorption potential of Haro river sand for the removal of antimony from acidic aqueous solution. Appl. Radiat. Isot. 47, 467–471 (1996)CrossRef Hasany, S.M., Chaudhary, M.H.: Sorption potential of Haro river sand for the removal of antimony from acidic aqueous solution. Appl. Radiat. Isot. 47, 467–471 (1996)CrossRef
200.
go back to reference Hichour, M., Persin, F., Sandeaux, J., Gavach, C.: Fluoride removal from water by Donnan dialysis. Sep. Purif. Technol. 18, 1–11 (2000)CrossRef Hichour, M., Persin, F., Sandeaux, J., Gavach, C.: Fluoride removal from water by Donnan dialysis. Sep. Purif. Technol. 18, 1–11 (2000)CrossRef
201.
go back to reference Wang, Y., Reardon, E.J.: Activation and regeneration of a soil sorbent for defluoridation of drinking water. Appl. Geochem. 16, 531–539 (2001)CrossRef Wang, Y., Reardon, E.J.: Activation and regeneration of a soil sorbent for defluoridation of drinking water. Appl. Geochem. 16, 531–539 (2001)CrossRef
202.
go back to reference Maliyekkal, S.M., Sharma, A.K., Philip, L.: Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water. Water Res. 40, 3497–3506 (2006)CrossRef Maliyekkal, S.M., Sharma, A.K., Philip, L.: Manganese-oxide-coated alumina: a promising sorbent for defluoridation of water. Water Res. 40, 3497–3506 (2006)CrossRef
203.
go back to reference Pervov, A.G., Dudkin, E.V., Oa, Sidorenko, Antipov, V.V., Sa, Khakhanov, Makarov, R.I.: RO and NF membrane systems for drinking water production and their maintenance techniques. Desalination 132, 315–321 (2000)CrossRef Pervov, A.G., Dudkin, E.V., Oa, Sidorenko, Antipov, V.V., Sa, Khakhanov, Makarov, R.I.: RO and NF membrane systems for drinking water production and their maintenance techniques. Desalination 132, 315–321 (2000)CrossRef
204.
go back to reference Rubel, F., Woosley, R.D.: The removal of excess fluoride from drinking water by activated alumina. J. Am. Water Works Assoc. 71, 45–49 (1979)CrossRef Rubel, F., Woosley, R.D.: The removal of excess fluoride from drinking water by activated alumina. J. Am. Water Works Assoc. 71, 45–49 (1979)CrossRef
205.
go back to reference Turner, B.D., Binning, P., Stipp, S.L.S.: Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environ. Sci. Technol. 39, 9561–9568 (2005)CrossRef Turner, B.D., Binning, P., Stipp, S.L.S.: Fluoride removal by calcite: Evidence for fluorite precipitation and surface adsorption. Environ. Sci. Technol. 39, 9561–9568 (2005)CrossRef
206.
go back to reference Islam, M., Patel, R.K.: Evaluation of removal efficiency of fluoride from aqueous solution using quick lime. J. Hazard. Mater. 143, 303–310 (2007)CrossRef Islam, M., Patel, R.K.: Evaluation of removal efficiency of fluoride from aqueous solution using quick lime. J. Hazard. Mater. 143, 303–310 (2007)CrossRef
207.
go back to reference Jain, S., Jayaram, R.V.: Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Sep. Sci. Technol. 44, 1436–1451 (2009)CrossRef Jain, S., Jayaram, R.V.: Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Sep. Sci. Technol. 44, 1436–1451 (2009)CrossRef
208.
go back to reference Streat, M., Hellgardt, K., Newton, N.L.R.: Hydrous ferric oxide as an adsorbent in water treatment. Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf. Environ. 86, 21–30 (2008)CrossRef Streat, M., Hellgardt, K., Newton, N.L.R.: Hydrous ferric oxide as an adsorbent in water treatment. Part 3: Batch and mini-column adsorption of arsenic, phosphorus, fluorine and cadmium ions. Process Saf. Environ. 86, 21–30 (2008)CrossRef
209.
go back to reference Kumar, E., Bhatnagar, A., Ji, M., Jung, W., Lee, S.-H., Kim, S.-J., Lee, G., Song, H., Choi, J.-Y., Yang, J.-S.: Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res. 43, 490–498 (2009)CrossRef Kumar, E., Bhatnagar, A., Ji, M., Jung, W., Lee, S.-H., Kim, S.-J., Lee, G., Song, H., Choi, J.-Y., Yang, J.-S.: Defluoridation from aqueous solutions by granular ferric hydroxide (GFH). Water Res. 43, 490–498 (2009)CrossRef
210.
go back to reference Mohapatra, M., Rout, K., Gupta, S.K., Singh, P., Anand, S., Mishra, B.K.: Facile synthesis of additive-assisted nano goethite powder and its application for fluoride remediation. J. Nanopart. Res. 12, 681–686 (2010)CrossRef Mohapatra, M., Rout, K., Gupta, S.K., Singh, P., Anand, S., Mishra, B.K.: Facile synthesis of additive-assisted nano goethite powder and its application for fluoride remediation. J. Nanopart. Res. 12, 681–686 (2010)CrossRef
211.
go back to reference Diaz-Nava, C., Olguin, M.T., Solache-Ríos, M.: Water defluoridation by Mexican heulandite–clinoptilolite. Sep. Sci. Technol. 37, 3109–3128 (2002)CrossRef Diaz-Nava, C., Olguin, M.T., Solache-Ríos, M.: Water defluoridation by Mexican heulandite–clinoptilolite. Sep. Sci. Technol. 37, 3109–3128 (2002)CrossRef
212.
go back to reference Onyango, M.S., Kojima, Y., Aoyi, O., Bernardo, E.C., Matsuda, H.: Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J. Colloid Interf. Sci. 279, 341–350 (2004)CrossRef Onyango, M.S., Kojima, Y., Aoyi, O., Bernardo, E.C., Matsuda, H.: Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J. Colloid Interf. Sci. 279, 341–350 (2004)CrossRef
213.
go back to reference Moges, G., Zewge, F., Socher, M.: Preliminary investigations on the defluorida-tion of water using fired clay chips. J. Afr. Earth Sci. 22, 479–482 (1996)CrossRef Moges, G., Zewge, F., Socher, M.: Preliminary investigations on the defluorida-tion of water using fired clay chips. J. Afr. Earth Sci. 22, 479–482 (1996)CrossRef
214.
go back to reference Tor, A.: Removal of fluoride from an aqueous solution by using montmorillonite. Desalination 201, 267–276 (2006)CrossRef Tor, A.: Removal of fluoride from an aqueous solution by using montmorillonite. Desalination 201, 267–276 (2006)CrossRef
215.
go back to reference Sarkar, M., Banerjee, A., Pramanick, P.P., Sarkar, A.R.: Use of laterite for the removal of fluoride from contaminated drinking water. J. Colloid Interf. Sci. 302, 432–441 (2006)CrossRef Sarkar, M., Banerjee, A., Pramanick, P.P., Sarkar, A.R.: Use of laterite for the removal of fluoride from contaminated drinking water. J. Colloid Interf. Sci. 302, 432–441 (2006)CrossRef
216.
go back to reference Thakre, D., Rayalu, S., Kawade, R., Meshram, S., Subrt, J., Labhsetwar, N.: Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater. 180, 122–130 (2010)CrossRef Thakre, D., Rayalu, S., Kawade, R., Meshram, S., Subrt, J., Labhsetwar, N.: Magnesium incorporated bentonite clay for defluoridation of drinking water. J. Hazard. Mater. 180, 122–130 (2010)CrossRef
217.
go back to reference Kamble, S.P., Dixit, P., Rayalu, S.S., Labhsetwar, N.K.: Defluoridation of drinking water using chemically modified bentonite clay. Desalination 249, 687–693 (2009)CrossRef Kamble, S.P., Dixit, P., Rayalu, S.S., Labhsetwar, N.K.: Defluoridation of drinking water using chemically modified bentonite clay. Desalination 249, 687–693 (2009)CrossRef
218.
go back to reference Zhang, J., Xie, S., Ho, Y.-S.: Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent. J. Hazard. Mater. 165, 218–222 (2009)CrossRef Zhang, J., Xie, S., Ho, Y.-S.: Removal of fluoride ions from aqueous solution using modified attapulgite as adsorbent. J. Hazard. Mater. 165, 218–222 (2009)CrossRef
219.
go back to reference Fan, J., Xu, Z., Zheng, S.: Comment on “Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides”. J. Hazard. Mater. 139, 175–177 (2007)CrossRef Fan, J., Xu, Z., Zheng, S.: Comment on “Factors influencing the removal of fluoride from aqueous solution by calcined Mg-Al-CO3 layered double hydroxides”. J. Hazard. Mater. 139, 175–177 (2007)CrossRef
220.
go back to reference Wang, H., Chen, J., Cai, Y., Ji, J., Liu, L., Teng, H.H.: Defluoridation of drinking water by Mg/Al hydrotalcite-like compounds and their calcined products. Appl. Clay Sci. 35, 59–66 (2007)CrossRef Wang, H., Chen, J., Cai, Y., Ji, J., Liu, L., Teng, H.H.: Defluoridation of drinking water by Mg/Al hydrotalcite-like compounds and their calcined products. Appl. Clay Sci. 35, 59–66 (2007)CrossRef
221.
go back to reference Diaz-Nava, C., Solache-Rios, M., Olguin, M.T.: Sorption of fluoride ions from aqueous solutions and well drinking water by thermally treated hydrotalcite. Sep. Sci. Technol. 38, 131–147 (2003)CrossRef Diaz-Nava, C., Solache-Rios, M., Olguin, M.T.: Sorption of fluoride ions from aqueous solutions and well drinking water by thermally treated hydrotalcite. Sep. Sci. Technol. 38, 131–147 (2003)CrossRef
222.
go back to reference Fan, X., Parker, D.J., Smith, M.D.: Adsorption kinetics of fluoride on low cost materials. Water Res. 37, 4929–4937 (2003)CrossRef Fan, X., Parker, D.J., Smith, M.D.: Adsorption kinetics of fluoride on low cost materials. Water Res. 37, 4929–4937 (2003)CrossRef
223.
go back to reference Zhang, Z., Tan, Y., Zhong, M.: Defluorination of wastewater by calcium chloride modified natural zeolite. Desalination 276, 246–252 (2011)CrossRef Zhang, Z., Tan, Y., Zhong, M.: Defluorination of wastewater by calcium chloride modified natural zeolite. Desalination 276, 246–252 (2011)CrossRef
224.
go back to reference Gogoi, P.K., Baruah, R.: Fluoride removal from water by adsorption on acid activated kaolinite clay (2008) Gogoi, P.K., Baruah, R.: Fluoride removal from water by adsorption on acid activated kaolinite clay (2008)
225.
go back to reference Das, D.P., Das, J., Parida, K.: Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J. Colloid Interf. Sci. 261, 213–220 (2003)CrossRef Das, D.P., Das, J., Parida, K.: Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. J. Colloid Interf. Sci. 261, 213–220 (2003)CrossRef
226.
go back to reference Lv, L., He, J., Wei, M., Duan, X.: Kinetic studies on fluoride removal by calcined layered double hydroxides. Ind. Eng. Chem. Res. 45, 8623–8628 (2006)CrossRef Lv, L., He, J., Wei, M., Duan, X.: Kinetic studies on fluoride removal by calcined layered double hydroxides. Ind. Eng. Chem. Res. 45, 8623–8628 (2006)CrossRef
227.
go back to reference Ibragimova, P.I., Grebennikov, S.F., Gur’yanov, V.V., Fedyukevich, V.A., Vorob’ev-Desyatovskii, N.V.: Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex. Russ. J. Phys. Chem. A 88, 1037–1041 (2014)CrossRef Ibragimova, P.I., Grebennikov, S.F., Gur’yanov, V.V., Fedyukevich, V.A., Vorob’ev-Desyatovskii, N.V.: Effect of the porous structure of activated carbon on the adsorption kinetics of gold(I) cyanide complex. Russ. J. Phys. Chem. A 88, 1037–1041 (2014)CrossRef
228.
go back to reference Ghorai, S., Pant, K.K.: Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol. 42, 265–271 (2005)CrossRef Ghorai, S., Pant, K.K.: Equilibrium, kinetics and breakthrough studies for adsorption of fluoride on activated alumina. Sep. Purif. Technol. 42, 265–271 (2005)CrossRef
229.
go back to reference Teng, S.X., Wang, S.G., Gong, W.X., Liu, X.W., Gao, B.Y.: Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism. J. Hazard. Mater. 168, 1004–1011 (2009)CrossRef Teng, S.X., Wang, S.G., Gong, W.X., Liu, X.W., Gao, B.Y.: Removal of fluoride by hydrous manganese oxide-coated alumina: performance and mechanism. J. Hazard. Mater. 168, 1004–1011 (2009)CrossRef
230.
go back to reference Lai, Y.D., Liu, J.C.: Fluoride removal from water with spent catalyst. Sep. Sci. Technol. 31, 2791–2803 (1996)CrossRef Lai, Y.D., Liu, J.C.: Fluoride removal from water with spent catalyst. Sep. Sci. Technol. 31, 2791–2803 (1996)CrossRef
231.
go back to reference Raichur, A.M., Jyoti Basu, M.: Adsorption of fluoride onto mixed rare earth oxides. Sep. Purif. Technol. 24, 121–127 (2001)CrossRef Raichur, A.M., Jyoti Basu, M.: Adsorption of fluoride onto mixed rare earth oxides. Sep. Purif. Technol. 24, 121–127 (2001)CrossRef
232.
go back to reference Ku, Y., Chiou, H.: The adsorption of fluoride ion from aqueous solution. Water Air Soil Pollut. 133, 349–360 (2002)CrossRef Ku, Y., Chiou, H.: The adsorption of fluoride ion from aqueous solution. Water Air Soil Pollut. 133, 349–360 (2002)CrossRef
233.
go back to reference Çengeloğlu, Y., Kır, E., Ersöz, M.: Removal of fluoride from aqueous solution by using red mud. Sep. Purif. Technol. 28, 81–86 (2002)CrossRef Çengeloğlu, Y., Kır, E., Ersöz, M.: Removal of fluoride from aqueous solution by using red mud. Sep. Purif. Technol. 28, 81–86 (2002)CrossRef
234.
go back to reference Sujana, M.G., Pradhan, H.K., Anand, S.: Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. J. Hazard. Mater. 161, 120–125 (2009)CrossRef Sujana, M.G., Pradhan, H.K., Anand, S.: Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. J. Hazard. Mater. 161, 120–125 (2009)CrossRef
235.
go back to reference Weiner, E.R.: Applications of Environmental Aquatic Chemistry: A Practical Guide. CRC press (2012) Weiner, E.R.: Applications of Environmental Aquatic Chemistry: A Practical Guide. CRC press (2012)
236.
go back to reference Sivasamy, A., Singh, K.P., Mohan, D., Maruthamuthu, M.: Studies on defluoridation of water by coal-based sorbents. J. Chem. Technol. Biotechnol. 76, 717–722 (2001)CrossRef Sivasamy, A., Singh, K.P., Mohan, D., Maruthamuthu, M.: Studies on defluoridation of water by coal-based sorbents. J. Chem. Technol. Biotechnol. 76, 717–722 (2001)CrossRef
237.
go back to reference Tokunaga, S., Haron, M.J., Wasay, S.A., Wong, K.F., Laosangthum, K., Uchiumi, A.: Removal of fluoride ions from aqueous solutions by multivalent metal compounds. Int. J. Environ. Stud. 48, 17–28 (1995)CrossRef Tokunaga, S., Haron, M.J., Wasay, S.A., Wong, K.F., Laosangthum, K., Uchiumi, A.: Removal of fluoride ions from aqueous solutions by multivalent metal compounds. Int. J. Environ. Stud. 48, 17–28 (1995)CrossRef
238.
go back to reference Bockris, J., Kim, J.: Electrochemical treatment of low-level nuclear wastes. J. Appl. Electrochem. 27, 623–634 (1997)CrossRef Bockris, J., Kim, J.: Electrochemical treatment of low-level nuclear wastes. J. Appl. Electrochem. 27, 623–634 (1997)CrossRef
239.
go back to reference Elmidaoui, A., Elhannouni, F., Menkouchi Sahli, M.A., Chay, L., Elabbassi, H., Hafsi, M., Largeteau, D.: Pollution of nitrate in Moroccan ground water: removal by electrodialysis. Desalination 136, 325–332 (2001)CrossRef Elmidaoui, A., Elhannouni, F., Menkouchi Sahli, M.A., Chay, L., Elabbassi, H., Hafsi, M., Largeteau, D.: Pollution of nitrate in Moroccan ground water: removal by electrodialysis. Desalination 136, 325–332 (2001)CrossRef
240.
go back to reference Carpenter, S.R., Caraco, N.F., Correll, D.L., WHowarth, R., Sharpley, A.N., Smith, V.H.: Nonpoint pollution of surface waters with phosphorus and nitrogen. Appl. Soil Ecol. 8, 559–568 (1998) Carpenter, S.R., Caraco, N.F., Correll, D.L., WHowarth, R., Sharpley, A.N., Smith, V.H.: Nonpoint pollution of surface waters with phosphorus and nitrogen. Appl. Soil Ecol. 8, 559–568 (1998)
241.
go back to reference Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., Wu, B.: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex 8, 284–293 (2011)CrossRef Fu, B., Liu, Y., Lü, Y., He, C., Zeng, Y., Wu, B.: Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China. Ecol. Complex 8, 284–293 (2011)CrossRef
242.
go back to reference Vitousek, P.M., Aber, J.D., Howarth, R.H., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G.: Human alteration of the global nitrogen cycle: source and consequences. Ecol. Appl. 7, 737–750 (1997) Vitousek, P.M., Aber, J.D., Howarth, R.H., Likens, G.E., Matson, P.A., Schindler, D.W., Schlesinger, W.H., Tilman, D.G.: Human alteration of the global nitrogen cycle: source and consequences. Ecol. Appl. 7, 737–750 (1997)
243.
go back to reference Kimura, K., Nakamura, M., Watanabe, Y.: Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration. Water Res. 36, 1758–1766 (2002)CrossRef Kimura, K., Nakamura, M., Watanabe, Y.: Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration. Water Res. 36, 1758–1766 (2002)CrossRef
244.
go back to reference Samatya, S., Kabay, N., Yüksel, Ü., Arda, M., Yüksel, M.: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 66, 1206–1214 (2006)CrossRef Samatya, S., Kabay, N., Yüksel, Ü., Arda, M., Yüksel, M.: Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React. Funct. Polym. 66, 1206–1214 (2006)CrossRef
245.
go back to reference Chatterjee, S., Woo, S.H.: The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164, 1012–1018 (2009)CrossRef Chatterjee, S., Woo, S.H.: The removal of nitrate from aqueous solutions by chitosan hydrogel beads. J. Hazard. Mater. 164, 1012–1018 (2009)CrossRef
246.
go back to reference Ayyasamy, P.M., Shanthi, K., Lakshmanaperumalsamy, P., Lee, S.-J., Choi, N.-C., Kim, D.-J.: Two-stage removal of nitrate from groundwater using biological and chemical treatments. J. Biosci. Bioeng. 104, 129–134 (2007)CrossRef Ayyasamy, P.M., Shanthi, K., Lakshmanaperumalsamy, P., Lee, S.-J., Choi, N.-C., Kim, D.-J.: Two-stage removal of nitrate from groundwater using biological and chemical treatments. J. Biosci. Bioeng. 104, 129–134 (2007)CrossRef
247.
go back to reference Katsounaros, I., Ipsakis, D., Polatides, C., Kyriacou, G.: Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim. Acta 52, 1329–1338 (2006)CrossRef Katsounaros, I., Ipsakis, D., Polatides, C., Kyriacou, G.: Efficient electrochemical reduction of nitrate to nitrogen on tin cathode at very high cathodic potentials. Electrochim. Acta 52, 1329–1338 (2006)CrossRef
248.
go back to reference Li, M., Feng, C., Zhang, Z., Sugiura, N.: Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim. Acta 54, 4600–4606 (2009)CrossRef Li, M., Feng, C., Zhang, Z., Sugiura, N.: Efficient electrochemical reduction of nitrate to nitrogen using Ti/IrO2–Pt anode and different cathodes. Electrochim. Acta 54, 4600–4606 (2009)CrossRef
249.
go back to reference Polatides, C., Dortsiou, M., Kyriacou, G.: Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochim. Acta 50, 5237–5241 (2005)CrossRef Polatides, C., Dortsiou, M., Kyriacou, G.: Electrochemical removal of nitrate ion from aqueous solution by pulsing potential electrolysis. Electrochim. Acta 50, 5237–5241 (2005)CrossRef
250.
go back to reference Gupta, V.K., Ali, I., Saini, V.K.: Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J. Colloid Interf. Sci. 315, 87–93 (2007)CrossRef Gupta, V.K., Ali, I., Saini, V.K.: Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J. Colloid Interf. Sci. 315, 87–93 (2007)CrossRef
251.
go back to reference Goyal, M., Bhagat, M., Dhawan, R.: Removal of mercury from water by fixed bed activated carbon columns. J. Hazard. Mater. 171, 1009–1015 (2009)CrossRef Goyal, M., Bhagat, M., Dhawan, R.: Removal of mercury from water by fixed bed activated carbon columns. J. Hazard. Mater. 171, 1009–1015 (2009)CrossRef
252.
go back to reference Demirbas, A.: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167, 1–9 (2009)CrossRef Demirbas, A.: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard. Mater. 167, 1–9 (2009)CrossRef
253.
go back to reference Ruparelia, J.P., Duttagupta, S.P., Chatterjee, A.K., Mukherji, S.: Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232, 145–156 (2008)CrossRef Ruparelia, J.P., Duttagupta, S.P., Chatterjee, A.K., Mukherji, S.: Potential of carbon nanomaterials for removal of heavy metals from water. Desalination 232, 145–156 (2008)CrossRef
254.
go back to reference Arora, M., Eddy, N.K., Mumford, K.A., Baba, Y., Perera, J.M., Stevens, G.W.: Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Reg. Sci. Technol. 62, 92–97 (2010)CrossRef Arora, M., Eddy, N.K., Mumford, K.A., Baba, Y., Perera, J.M., Stevens, G.W.: Surface modification of natural zeolite by chitosan and its use for nitrate removal in cold regions. Cold Reg. Sci. Technol. 62, 92–97 (2010)CrossRef
255.
go back to reference Schick, J., Caullet, P., Paillaud, J.L., Patarin, J., Mangold-Callarec, C.: Batch-wise nitrate removal from water on a surfactant-modified zeolite. Micropor. Mesopor. Mat. 132(3), 395–400 (2010)CrossRef Schick, J., Caullet, P., Paillaud, J.L., Patarin, J., Mangold-Callarec, C.: Batch-wise nitrate removal from water on a surfactant-modified zeolite. Micropor. Mesopor. Mat. 132(3), 395–400 (2010)CrossRef
256.
go back to reference Xi, Y., Mallavarapu, M., Naidu, R.: Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci. 48, 92–96 (2010)CrossRef Xi, Y., Mallavarapu, M., Naidu, R.: Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci. 48, 92–96 (2010)CrossRef
257.
go back to reference Ozcan, A., Sahin, M., Ozcan, A.S.: Adsorption of nitrate ions onto sepiolite and surfactant-modified sepiolite. Adsorpt. Sci. Technol. 23, 323–333 (2005)CrossRef Ozcan, A., Sahin, M., Ozcan, A.S.: Adsorption of nitrate ions onto sepiolite and surfactant-modified sepiolite. Adsorpt. Sci. Technol. 23, 323–333 (2005)CrossRef
258.
go back to reference Öztürk, N., Bektaş, T.E.: Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 112, 155–162 (2004)CrossRef Öztürk, N., Bektaş, T.E.: Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 112, 155–162 (2004)CrossRef
259.
go back to reference Mena-Duran, C.J., Sun Kou, M.R., Lopez, T., Azamar-Barrios, J.A., Aguilar, D.H., Domínguez, M.I., Odriozola, J.A., Quintana, P.: Nitrate removal using natural clays modified by acid thermoactivation. Appl. Surf. Sci. 253, 5762–5766 (2007)CrossRef Mena-Duran, C.J., Sun Kou, M.R., Lopez, T., Azamar-Barrios, J.A., Aguilar, D.H., Domínguez, M.I., Odriozola, J.A., Quintana, P.: Nitrate removal using natural clays modified by acid thermoactivation. Appl. Surf. Sci. 253, 5762–5766 (2007)CrossRef
260.
go back to reference Islam, M., Patel, R.: Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination 256, 120–128 (2010)CrossRef Islam, M., Patel, R.: Synthesis and physicochemical characterization of Zn/Al chloride layered double hydroxide and evaluation of its nitrate removal efficiency. Desalination 256, 120–128 (2010)CrossRef
Metadata
Title
Adsorption of Anions on Minerals
Authors
Feifei Jia
Min Dai
Bingqiao Yang
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-54451-5_4

Premium Partners