Skip to main content
Top
Published in: Evolutionary Intelligence 1/2022

23-11-2020 | Research Paper

Advanced centralized and distributed SVM models over different IoT levels for edge layer intelligence and control

Authors: Bhawani Shankar Pattnaik, Arunima Sambhuta Pattanayak, Siba Kumar Udgata, Ajit Kumar Panda

Published in: Evolutionary Intelligence | Issue 1/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this era, internet-of-things (IoT) deal with billions of edge devices potentially connected to each other. Maximum applications built on these edge devices generate a massive amount of online data and also require real-time computation and decision making with low latency (e.g., robotics/ drones, self-driving cars, smart IoT, electronics/ wearable devices). To suffice the requirement, the future generation intelligent edge devices need to be capable of computing complex machine learning algorithms on live data in real-time. Considering different layers of IoT and distributed computing concept, this paper suggests three different operational models where the ML algorithm will be executed in a distributed manner between the edge and cloud layer of IoT so that the edge node can take a decision in real-time. The three models are; model 1: training and prediction both will be done locally by the edge, model 2: training at the server and decision making at the edge node, and model 3: distributed training and distributed decision making at the edge level with global shared knowledge and security. All three models have been tested using support vector machine using thirteen diverse datasets to profile their performance in terms of both training and inference time. A comparative study between the computational performance of the edge and cloud nodes is also presented here. Through the simulated experiments using the different datasets, it is observed that, the edge node inference time is approximately ten times faster than cloud time for all tested datasets for each proposed model. At the same time, the model 2 training time is approximately nine times faster than model 1 and eleven times faster than model 3.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Bogue R (2014) Towards the trillion sensors market. Sens Rev 34(2):137–142CrossRef Bogue R (2014) Towards the trillion sensors market. Sens Rev 34(2):137–142CrossRef
4.
go back to reference Evans D (2011) The internet of things: How the next evolution of the internet is changing everything. CISCO White Pap 1(2011):1–11 Evans D (2011) The internet of things: How the next evolution of the internet is changing everything. CISCO White Pap 1(2011):1–11
5.
go back to reference Index CGC (2018) Forecast and methodology, 2016–2021 white paper. Updated: February, vol 1 Index CGC (2018) Forecast and methodology, 2016–2021 white paper. Updated: February, vol 1
6.
go back to reference Linthicum D (2016) Responsive data architecture for the internet of things. IEEE Ann Hist Comput 49(10):72–75CrossRef Linthicum D (2016) Responsive data architecture for the internet of things. IEEE Ann Hist Comput 49(10):72–75CrossRef
7.
go back to reference Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W (2017) A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE IoT J 4(5):1125–1142 Lin J, Yu W, Zhang N, Yang X, Zhang H, Zhao W (2017) A survey on internet of things: architecture, enabling technologies, security and privacy, and applications. IEEE IoT J 4(5):1125–1142
8.
go back to reference Stankovic JA (2014) Research directions for the internet of things. IEEE IoT J 1(1):3–9 Stankovic JA (2014) Research directions for the internet of things. IEEE IoT J 1(1):3–9
9.
go back to reference Wu J, Zhao W (2016) Design and realization of winternet: from net of things to internet of things. ACM Trans Cyber Phys Syst 1(1):1–12CrossRef Wu J, Zhao W (2016) Design and realization of winternet: from net of things to internet of things. ACM Trans Cyber Phys Syst 1(1):1–12CrossRef
10.
go back to reference Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, Yang X (2017) A survey on the edge computing for the internet of things. IEEE Access 6:6900–6919CrossRef Yu W, Liang F, He X, Hatcher WG, Lu C, Lin J, Yang X (2017) A survey on the edge computing for the internet of things. IEEE Access 6:6900–6919CrossRef
11.
go back to reference Pan J, McElhannon J (2017) Future edge cloud and edge computing for internet of things applications. IEEE IoT J 5(1):439–449 Pan J, McElhannon J (2017) Future edge cloud and edge computing for internet of things applications. IEEE IoT J 5(1):439–449
15.
go back to reference Forero PA, Cano A, Giannakis GB (2010) Consensus-based distributed support vector machines. J Mach Learn Res 11(5):28MathSciNetMATH Forero PA, Cano A, Giannakis GB (2010) Consensus-based distributed support vector machines. J Mach Learn Res 11(5):28MathSciNetMATH
16.
go back to reference Mateos G, Bazerque JA, Giannakis GB (2010) Distributed sparse linear regression. IEEE Trans Signal Process 58(10):5262–5276MathSciNetCrossRef Mateos G, Bazerque JA, Giannakis GB (2010) Distributed sparse linear regression. IEEE Trans Signal Process 58(10):5262–5276MathSciNetCrossRef
17.
go back to reference Hakim AE (2018) Internet of things (IoT) system architecture and technologies, pp 0–5 Hakim AE (2018) Internet of things (IoT) system architecture and technologies, pp 0–5
18.
go back to reference Stolpe M, Bhaduri K, Das K (2016) Distributed support vector machines: an overview. In: Solving large scale learning tasks. Challenges and algorithms, Springer, pp 109–138 Stolpe M, Bhaduri K, Das K (2016) Distributed support vector machines: an overview. In: Solving large scale learning tasks. Challenges and algorithms, Springer, pp 109–138
19.
go back to reference Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18CrossRef Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. ACM SIGKDD Explor Newslett 11(1):10–18CrossRef
21.
go back to reference Patttanayak AS, Pattnaik BS, Panda BN (2014) Implementation of a smart grid system to remotely monitor, control and schedule energy sources using android based mobile devices. In: 2014 9th international conference on industrial and information systems (ICIIS). IEEE, pp 1–5 Patttanayak AS, Pattnaik BS, Panda BN (2014) Implementation of a smart grid system to remotely monitor, control and schedule energy sources using android based mobile devices. In: 2014 9th international conference on industrial and information systems (ICIIS). IEEE, pp 1–5
22.
go back to reference Dalai I, Mudali P, Pattanayak AS, Pattnaik BS (2019) Hourly prediction of load using edge intelligence over IoT. In: 2019 11th international conference on advanced computing (ICoAC). IEEE, pp 117–121 Dalai I, Mudali P, Pattanayak AS, Pattnaik BS (2019) Hourly prediction of load using edge intelligence over IoT. In: 2019 11th international conference on advanced computing (ICoAC). IEEE, pp 117–121
23.
go back to reference Cristianini N, Shawe-Taylor J et al (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRef Cristianini N, Shawe-Taylor J et al (2000) An introduction to support vector machines and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRef
24.
go back to reference Zeng Z-Q, Yu H-B, Xu H-R, Xie Y-Q, Gao J (2008) Fast training support vector machines using parallel sequential minimal optimization. In: 2008 3rd international conference on intelligent system and knowledge engineering, vol 1. IEEE, pp 997–1001 Zeng Z-Q, Yu H-B, Xu H-R, Xie Y-Q, Gao J (2008) Fast training support vector machines using parallel sequential minimal optimization. In: 2008 3rd international conference on intelligent system and knowledge engineering, vol 1. IEEE, pp 997–1001
26.
go back to reference Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Data mining techniques for the life sciences, Springer, pp 223–239 Ben-Hur A, Weston J (2010) A user’s guide to support vector machines. In: Data mining techniques for the life sciences, Springer, pp 223–239
28.
go back to reference Chang C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27CrossRef Chang C-C, Lin C-J (2011) Libsvm: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27CrossRef
30.
go back to reference Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth AP (2018) Machine learning for internet of things data analysis: a survey. Dig Commun Netw 4(3):161–175CrossRef Mahdavinejad MS, Rezvan M, Barekatain M, Adibi P, Barnaghi P, Sheth AP (2018) Machine learning for internet of things data analysis: a survey. Dig Commun Netw 4(3):161–175CrossRef
31.
go back to reference Moallem P, Razmjooy N, Ashourian M (2013) Computer vision-based potato defect detection using neural networks and support vector machine. Int J Robot Autom 28(2):137–145 Moallem P, Razmjooy N, Ashourian M (2013) Computer vision-based potato defect detection using neural networks and support vector machine. Int J Robot Autom 28(2):137–145
32.
go back to reference Razmjooy N, Estrela VV, Loschi HJ (2019) A study on metaheuristic-based neural networks for image segmentation purposes. In: Data science. CRC Press, pp 25–49 Razmjooy N, Estrela VV, Loschi HJ (2019) A study on metaheuristic-based neural networks for image segmentation purposes. In: Data science. CRC Press, pp 25–49
33.
go back to reference Razmjooy N, Mousavi BS, Soleymani F, Khotbesara MH (2013) A computer-aided diagnosis system for malignant melanomas. Neural Comput Appl 23(7–8):2059–2071CrossRef Razmjooy N, Mousavi BS, Soleymani F, Khotbesara MH (2013) A computer-aided diagnosis system for malignant melanomas. Neural Comput Appl 23(7–8):2059–2071CrossRef
34.
go back to reference Razmjooy N, Ashourian M, Karimifard M, Estrela VV, Loschi HJ, do Nascimento D, França RP Vishnevski (2020) Computer-aided diagnosis of skin cance: a review. Curr Med Imag 5:1669 Razmjooy N, Ashourian M, Karimifard M, Estrela VV, Loschi HJ, do Nascimento D, França RP Vishnevski (2020) Computer-aided diagnosis of skin cance: a review. Curr Med Imag 5:1669
35.
go back to reference Systems C (2015) Fog computing and the internet of things: extend the cloud to where the things are Systems C (2015) Fog computing and the internet of things: extend the cloud to where the things are
37.
go back to reference Rahmani AM, Gia TN, Negash B, Anzanpour A, Azimi I, Jiang M, Liljeberg P (2018) Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Fut Gener Comput Syst 78:641–658CrossRef Rahmani AM, Gia TN, Negash B, Anzanpour A, Azimi I, Jiang M, Liljeberg P (2018) Exploiting smart e-health gateways at the edge of healthcare internet-of-things: a fog computing approach. Fut Gener Comput Syst 78:641–658CrossRef
38.
go back to reference Krishnamoorthy M, Suresh S, Alagappan S et al (2020) Deep learning techniques and optimization strategies in big data analytics: automated transfer learning of convolutional neural networks using enas algorithm. In: Deep learning techniques and optimization strategies in big data analytics. IGI Global, pp 142–153 Krishnamoorthy M, Suresh S, Alagappan S et al (2020) Deep learning techniques and optimization strategies in big data analytics: automated transfer learning of convolutional neural networks using enas algorithm. In: Deep learning techniques and optimization strategies in big data analytics. IGI Global, pp 142–153
40.
go back to reference Kargupta H, Park B-H, Pittie S, Liu L, Kushraj D, Sarkar K (2002) Mobimine: monitoring the stock market from a PDA. ACM SIGKDD Explor Newslett 3(2):37–46CrossRef Kargupta H, Park B-H, Pittie S, Liu L, Kushraj D, Sarkar K (2002) Mobimine: monitoring the stock market from a PDA. ACM SIGKDD Explor Newslett 3(2):37–46CrossRef
41.
go back to reference Kargupta H, Bhargava R, Liu K, Powers M, Blair P, Bushra S, Dull J, Sarkar K, Klein M, Vasa M, et al (2004) Vedas: a mobile and distributed data stream mining system for real-time vehicle monitoring. In: Proceedings of the 2004 SIAM international conference on data mining. SIAM, pp 300–311 Kargupta H, Bhargava R, Liu K, Powers M, Blair P, Bushra S, Dull J, Sarkar K, Klein M, Vasa M, et al (2004) Vedas: a mobile and distributed data stream mining system for real-time vehicle monitoring. In: Proceedings of the 2004 SIAM international conference on data mining. SIAM, pp 300–311
42.
go back to reference Gaber MM, Philip SY (2006) A holistic approach for resource-aware adaptive data stream mining. New Gener Comput 25(1):95–115CrossRef Gaber MM, Philip SY (2006) A holistic approach for resource-aware adaptive data stream mining. New Gener Comput 25(1):95–115CrossRef
43.
go back to reference Gaber MM (2009) Data stream mining using granularity-based approach. In: Foundations of computational, intelligence, vol 6, pp 47–66, Springer Gaber MM (2009) Data stream mining using granularity-based approach. In: Foundations of computational, intelligence, vol 6, pp 47–66, Springer
44.
go back to reference Gaber MM, Gomes JB, Stahl F (2014) Pocket data mining. Big data on small devices. Series: Studies in Big Data Gaber MM, Gomes JB, Stahl F (2014) Pocket data mining. Big data on small devices. Series: Studies in Big Data
45.
go back to reference Li H, Ota K, Dong M (2018) Learning iot in edge: deep learning for the internet of things with edge computing. IEEE Netw 32(1):96–101CrossRef Li H, Ota K, Dong M (2018) Learning iot in edge: deep learning for the internet of things with edge computing. IEEE Netw 32(1):96–101CrossRef
46.
go back to reference Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861 Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Adam H (2017) Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv:​1704.​04861
47.
go back to reference Yazici MT, Basurra S, Gaber MM (2018) Edge machine learning: Enabling smart internet of things applications. Big Data Cognit Comput 2(3):26CrossRef Yazici MT, Basurra S, Gaber MM (2018) Edge machine learning: Enabling smart internet of things applications. Big Data Cognit Comput 2(3):26CrossRef
48.
go back to reference Pattanayak A, Pattnaik B, Udgata S, Panda A (2020) Development of chemical oxygen on demand (cod) soft sensor using edge intelligence. IEEE Sens J PP:1–1 Pattanayak A, Pattnaik B, Udgata S, Panda A (2020) Development of chemical oxygen on demand (cod) soft sensor using edge intelligence. IEEE Sens J PP:1–1
49.
go back to reference Sahoo AK, Udgata SK (2020) A novel ann-based adaptive ultrasonic measurement system for accurate water level monitoring. IEEE Trans Instrum Meas 69(6):3359–3369CrossRef Sahoo AK, Udgata SK (2020) A novel ann-based adaptive ultrasonic measurement system for accurate water level monitoring. IEEE Trans Instrum Meas 69(6):3359–3369CrossRef
51.
go back to reference Üstün B, Melssen WJ, Buydens LM (2006) Facilitating the application of support vector regression by using a universal pearson vii function based kernel. Chemometr Intell Lab Syst 81(1):29–40CrossRef Üstün B, Melssen WJ, Buydens LM (2006) Facilitating the application of support vector regression by using a universal pearson vii function based kernel. Chemometr Intell Lab Syst 81(1):29–40CrossRef
53.
go back to reference Richardson L, Ruby S (2008) RESTful web services. O’Reilly Media Inc, London Richardson L, Ruby S (2008) RESTful web services. O’Reilly Media Inc, London
Metadata
Title
Advanced centralized and distributed SVM models over different IoT levels for edge layer intelligence and control
Authors
Bhawani Shankar Pattnaik
Arunima Sambhuta Pattanayak
Siba Kumar Udgata
Ajit Kumar Panda
Publication date
23-11-2020
Publisher
Springer Berlin Heidelberg
Published in
Evolutionary Intelligence / Issue 1/2022
Print ISSN: 1864-5909
Electronic ISSN: 1864-5917
DOI
https://doi.org/10.1007/s12065-020-00524-3

Other articles of this Issue 1/2022

Evolutionary Intelligence 1/2022 Go to the issue

Premium Partner