Skip to main content
Top

2021 | OriginalPaper | Chapter

10. Advanced Fermentation Strategies to Enhance Lipid Production from Lignocellulosic Biomass

Authors : Qiang Fei, Yunyun Liu, Haritha Meruvu, Ziyue Jiao, Rongzhan Fu

Published in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter discusses the related researches on microbial lipid biosynthetic processes, the inhibitor tolerance of lipid-producing microorganisms, and high cell density culture strategies for lipid production from lignocellulosic biomass. The aspects covered here mainly focused on the elucidation of lipid accumulations of oleaginous microorganisms in different fermentation modes including batch, fed-batch, and continuous cultivation coupled with multistage strategies for increasing cell densities of oleaginous microbes thereby improving lipid yield, titer, and productivity. Furthermore, because of the inhibitors generated during hydrolysis processes as by-products that influence the lipid biosynthesis, the strategies to enhance the lipid content through metabolic engineering approach including blocking of competing pathways and multigene methods were discussed in this chapter. It is suggested that the efficiency of the lignocellulosic lipid-based biorefinery process would be greatly improved if the cultivation platform of oleaginous microorganisms could integrate both micro-manipulations for the gene expression and fermentation strategies with the online control-feedback system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Kosa, M., & Ragauskas, A. J. (2011). Lipids from heterotrophic microbes: Advances in metabolism research. Trends in Biotechnology, 29(2), 53–61.CrossRef Kosa, M., & Ragauskas, A. J. (2011). Lipids from heterotrophic microbes: Advances in metabolism research. Trends in Biotechnology, 29(2), 53–61.CrossRef
2.
go back to reference Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807–815.CrossRef Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86(11), 807–815.CrossRef
3.
go back to reference Garay, L. A., Boundy-Mills, K. L., & German, J. B. (2014). Accumulation of high-value lipids in single-cell microorganisms: A mechanistic approach and future perspectives. Journal of Agricultural and Food Chemistry, 62(13), 2709–2727.CrossRef Garay, L. A., Boundy-Mills, K. L., & German, J. B. (2014). Accumulation of high-value lipids in single-cell microorganisms: A mechanistic approach and future perspectives. Journal of Agricultural and Food Chemistry, 62(13), 2709–2727.CrossRef
4.
go back to reference Zhang, H., Wu, C., Wu, Q., Dai, J., & Song, Y. (2016). Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-labeled glucose and gas chromatography-mass spectrometry. PLoS One, 11(7), e0159187.CrossRef Zhang, H., Wu, C., Wu, Q., Dai, J., & Song, Y. (2016). Metabolic flux analysis of lipid biosynthesis in the yeast Yarrowia lipolytica using 13C-labeled glucose and gas chromatography-mass spectrometry. PLoS One, 11(7), e0159187.CrossRef
5.
go back to reference Pereira, G., Finco, A. M., Letti, L., Karp, S., Pagnoncelli, M., Oliveira, J., Thomaz-Soccol, V., Brar, S., & Soccol, C. (2018). Microbial metabolic pathways in the production of valued-added products. In S. K. Brar, R. K. Das, & S. J. Sarma (Eds.), Microbial sensing in fermentation (pp. 137–167). Hoboken: Wiley.CrossRef Pereira, G., Finco, A. M., Letti, L., Karp, S., Pagnoncelli, M., Oliveira, J., Thomaz-Soccol, V., Brar, S., & Soccol, C. (2018). Microbial metabolic pathways in the production of valued-added products. In S. K. Brar, R. K. Das, & S. J. Sarma (Eds.), Microbial sensing in fermentation (pp. 137–167). Hoboken: Wiley.CrossRef
6.
go back to reference Beopoulos, A., Nicaud, J.-M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193–1206.CrossRef Beopoulos, A., Nicaud, J.-M., & Gaillardin, C. (2011). An overview of lipid metabolism in yeasts and its impact on biotechnological processes. Applied Microbiology and Biotechnology, 90(4), 1193–1206.CrossRef
7.
go back to reference Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In A. I. Laskin, J. W. Bennett, & G. M. Gadd (Eds.), Advances in applied microbiology (pp. 1–52). Amsterdam: Academic Press. Ratledge, C., & Wynn, J. P. (2002). The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. In A. I. Laskin, J. W. Bennett, & G. M. Gadd (Eds.), Advances in applied microbiology (pp. 1–52). Amsterdam: Academic Press.
8.
go back to reference Passoth, V. (2017). Lipids of yeasts and filamentous fungi and their importance for biotechnology. In A. A. Sibirny (Ed.), Biotechnology of yeasts and filamentous fungi (pp. 149–204). Cham: Springer International Publishing.CrossRef Passoth, V. (2017). Lipids of yeasts and filamentous fungi and their importance for biotechnology. In A. A. Sibirny (Ed.), Biotechnology of yeasts and filamentous fungi (pp. 149–204). Cham: Springer International Publishing.CrossRef
9.
go back to reference Davis, M. S. S. J., & Cronan, J. E., Jr. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. Journal of Biological Chemistry, 275(37), 28593–28598.CrossRef Davis, M. S. S. J., & Cronan, J. E., Jr. (2000). Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. Journal of Biological Chemistry, 275(37), 28593–28598.CrossRef
10.
go back to reference Liang, M. H. J. J. G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.CrossRef Liang, M. H. J. J. G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.CrossRef
11.
go back to reference Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293(5528), 290–293.CrossRef Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293(5528), 290–293.CrossRef
12.
go back to reference Ferguson, J. J. A., Dias, C. B., & Garg, M. L. (2016). Omega-3 polyunsaturated fatty acids and hyperlipidaemias. In M. V. Hegde, A. A. Zanwar, & S. P. Adekar (Eds.), Omega-3 fatty acids: Keys to nutritional health (pp. 67–78). Cham: Springer International Publishing.CrossRef Ferguson, J. J. A., Dias, C. B., & Garg, M. L. (2016). Omega-3 polyunsaturated fatty acids and hyperlipidaemias. In M. V. Hegde, A. A. Zanwar, & S. P. Adekar (Eds.), Omega-3 fatty acids: Keys to nutritional health (pp. 67–78). Cham: Springer International Publishing.CrossRef
13.
go back to reference Ouyang, L.-L., Chen, S.-H., Li, Y., & Zhou, Z.-G. (2013). Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14(1), 396.CrossRef Ouyang, L.-L., Chen, S.-H., Li, Y., & Zhou, Z.-G. (2013). Transcriptome analysis reveals unique C4-like photosynthesis and oil body formation in an arachidonic acid-rich microalga Myrmecia incisa Reisigl H4301. BMC Genomics, 14(1), 396.CrossRef
14.
go back to reference Ma Y.-L. (2006). Microbial oils and its research advance. Chinese Journal of Bioprocess Engineering, 4(4), 7–11. Ma Y.-L. (2006). Microbial oils and its research advance. Chinese Journal of Bioprocess Engineering, 4(4), 7–11.
15.
go back to reference Athenstaedt, K. D., & G. (1999). Phosphatidic acid, a key intermediate in lipid metabolism. European Journal of Biochemistry, 266(1), 1–16.CrossRef Athenstaedt, K. D., & G. (1999). Phosphatidic acid, a key intermediate in lipid metabolism. European Journal of Biochemistry, 266(1), 1–16.CrossRef
16.
go back to reference Coleman, R. A., & Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43(2), 134–176.CrossRef Coleman, R. A., & Lee, D. P. (2004). Enzymes of triacylglycerol synthesis and their regulation. Progress in Lipid Research, 43(2), 134–176.CrossRef
17.
go back to reference Galán, B., Santos-Merino, M., Nogales, J., de la Cruz, F., & García, J. L. (2019). Microbial oils as nutraceuticals and animal feeds. In H. Goldfine (Ed.), Health consequences of microbial interactions with hydrocarbons, oils, and lipids (pp. 1–45). Cham: Springer International Publishing. Galán, B., Santos-Merino, M., Nogales, J., de la Cruz, F., & García, J. L. (2019). Microbial oils as nutraceuticals and animal feeds. In H. Goldfine (Ed.), Health consequences of microbial interactions with hydrocarbons, oils, and lipids (pp. 1–45). Cham: Springer International Publishing.
18.
go back to reference Minskoff, S. A., Racenis, P. V., Granger, J., Larkins, L., Hajra, A. K., & Greenberg, M. L. (1994). Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae. Journal of Lipid Research (USA), 35(12), 2254–2262.CrossRef Minskoff, S. A., Racenis, P. V., Granger, J., Larkins, L., Hajra, A. K., & Greenberg, M. L. (1994). Regulation of phosphatidic acid biosynthetic enzymes in Saccharomyces cerevisiae. Journal of Lipid Research (USA), 35(12), 2254–2262.CrossRef
19.
go back to reference Liang, M.-H., & Jiang, J.-G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.CrossRef Liang, M.-H., & Jiang, J.-G. (2013). Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Progress in Lipid Research, 52(4), 395–408.CrossRef
20.
go back to reference Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. C., & Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33(1), 43–54.CrossRef Jin, M., Slininger, P. J., Dien, B. S., Waghmode, S., Moser, B. R., Orjuela, A., Sousa, L. C., & Balan, V. (2015). Microbial lipid-based lignocellulosic biorefinery: Feasibility and challenges. Trends in Biotechnology, 33(1), 43–54.CrossRef
21.
go back to reference Sousa, F. P., Silva, L. N., de Rezende, D. B., de Oliveira, L. C. A., & Pasa, V. M. D. (2018). Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel, 223, 149–156.CrossRef Sousa, F. P., Silva, L. N., de Rezende, D. B., de Oliveira, L. C. A., & Pasa, V. M. D. (2018). Simultaneous deoxygenation, cracking and isomerization of palm kernel oil and palm olein over beta zeolite to produce biogasoline, green diesel and biojet-fuel. Fuel, 223, 149–156.CrossRef
22.
go back to reference Huang, W.-D., & Zhang, Y. H. P. (2011). Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy & Environmental Science, 4(3), 784–792.CrossRef Huang, W.-D., & Zhang, Y. H. P. (2011). Analysis of biofuels production from sugar based on three criteria: Thermodynamics, bioenergetics, and product separation. Energy & Environmental Science, 4(3), 784–792.CrossRef
23.
go back to reference Chang, Y.-H., Chang, K.-S., Lee, C.-F., Hsu, C.-L., Huang, C.-W., & Jang, H.-D. (2015). Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass and Bioenergy, 72, 95–103.CrossRef Chang, Y.-H., Chang, K.-S., Lee, C.-F., Hsu, C.-L., Huang, C.-W., & Jang, H.-D. (2015). Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source. Biomass and Bioenergy, 72, 95–103.CrossRef
24.
go back to reference Anschau, A., Xavier, M. C. A., Hernalsteens, S., & Franco, T. T. (2014). Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresource Technology, 157, 214–222.CrossRef Anschau, A., Xavier, M. C. A., Hernalsteens, S., & Franco, T. T. (2014). Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresource Technology, 157, 214–222.CrossRef
25.
go back to reference Fei, Q., O’Brien, M., Nelson, R., Chen, X., Lowell, A., & Dowe, N. (2016). Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnology for Biofuels, 9(1), 1–12.CrossRef Fei, Q., O’Brien, M., Nelson, R., Chen, X., Lowell, A., & Dowe, N. (2016). Enhanced lipid production by Rhodosporidium toruloides using different fed-batch feeding strategies with lignocellulosic hydrolysate as the sole carbon source. Biotechnology for Biofuels, 9(1), 1–12.CrossRef
26.
go back to reference Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. V. (2011). Single cell oil production from rice hulls hydrolysate. Bioresource Technology, 102(20), 9737–9742.CrossRef Economou, C. N., Aggelis, G., Pavlou, S., & Vayenas, D. V. (2011). Single cell oil production from rice hulls hydrolysate. Bioresource Technology, 102(20), 9737–9742.CrossRef
27.
go back to reference Moreton, R. S. (1988). Physiology of lipid accumulation yeast. In R. S. Moreton (Ed.), Single cell oil. London: Longman Higher Education Division. Moreton, R. S. (1988). Physiology of lipid accumulation yeast. In R. S. Moreton (Ed.), Single cell oil. London: Longman Higher Education Division.
28.
go back to reference Zhao, X., Hu, C., Wu, S., Shen, H., & Zhao, Z. K. (2011). Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. Journal of Industrial Microbiology & Biotechnology, 38(5), 627–632.CrossRef Zhao, X., Hu, C., Wu, S., Shen, H., & Zhao, Z. K. (2011). Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. Journal of Industrial Microbiology & Biotechnology, 38(5), 627–632.CrossRef
29.
go back to reference Hernández-Beltrán, J. U., & Hernández-Escoto, H. (2018). Enzymatic hydrolysis of biomass at high-solids loadings through fed-batch operation. Biomass and Bioenergy, 119, 191–197.CrossRef Hernández-Beltrán, J. U., & Hernández-Escoto, H. (2018). Enzymatic hydrolysis of biomass at high-solids loadings through fed-batch operation. Biomass and Bioenergy, 119, 191–197.CrossRef
30.
go back to reference Li, Y., Zhao, Z., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.CrossRef Li, Y., Zhao, Z., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.CrossRef
31.
go back to reference Liu, Y., Wang, Y., Liu, H., & Zhang, J. a. (2015). Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresource Technology, 180, 32–39.CrossRef Liu, Y., Wang, Y., Liu, H., & Zhang, J. a. (2015). Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy. Bioresource Technology, 180, 32–39.CrossRef
32.
go back to reference Kim, B. S., Lee, S. C., Lee, S. Y., Chang, H. N., Chang, Y. K., & Woo, S. I. (1994). Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnology and Bioengineering, 43(9), 892.CrossRef Kim, B. S., Lee, S. C., Lee, S. Y., Chang, H. N., Chang, Y. K., & Woo, S. I. (1994). Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnology and Bioengineering, 43(9), 892.CrossRef
33.
go back to reference Salehmin, M. N. I., Annuar, M. S. M., & Chisti, Y. (2013). High cell density fed-batch fermentations for lipase production: Feeding strategies and oxygen transfer. Bioprocess and Biosystems Engineering, 36(11), 1527–1543.CrossRef Salehmin, M. N. I., Annuar, M. S. M., & Chisti, Y. (2013). High cell density fed-batch fermentations for lipase production: Feeding strategies and oxygen transfer. Bioprocess and Biosystems Engineering, 36(11), 1527–1543.CrossRef
34.
go back to reference Hassan, M., Blanc, P. J., Granger, L. M., Pareilleux, A., & Goma, G. (1996). Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry, 31(4), 355–361.CrossRef Hassan, M., Blanc, P. J., Granger, L. M., Pareilleux, A., & Goma, G. (1996). Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry, 31(4), 355–361.CrossRef
35.
go back to reference Wiebe, M. G., Koivuranta, K., Penttilä, M., & Ruohonen, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12(1), 26.CrossRef Wiebe, M. G., Koivuranta, K., Penttilä, M., & Ruohonen, L. (2012). Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology, 12(1), 26.CrossRef
36.
go back to reference Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O’Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. C., & Dale, B. E. (2016). Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 113(8), 1676–1690.CrossRef Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O’Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. C., & Dale, B. E. (2016). Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 113(8), 1676–1690.CrossRef
37.
go back to reference Wang, T., Tian, X., Liu, T., Wang, Z., Guan, W., Guo, M., Chu, J., & Zhuang, Y. (2017). A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochemistry, 60, 74–83.CrossRef Wang, T., Tian, X., Liu, T., Wang, Z., Guan, W., Guo, M., Chu, J., & Zhuang, Y. (2017). A two-stage fed-batch heterotrophic culture of Chlorella protothecoides that combined nitrogen depletion with hyperosmotic stress strategy enhanced lipid yield and productivity. Process Biochemistry, 60, 74–83.CrossRef
38.
go back to reference Fei, Q., Wewetzer, S. J., Kurosawa, K., Rha, C., & Sinskey, A. J. (2015). High-cell-density cultivation of an engineered Rhodococcus opacus strain for lipid production via co-fermentation of glucose and xylose. Process Biochemistry, 50(4), 500–506.CrossRef Fei, Q., Wewetzer, S. J., Kurosawa, K., Rha, C., & Sinskey, A. J. (2015). High-cell-density cultivation of an engineered Rhodococcus opacus strain for lipid production via co-fermentation of glucose and xylose. Process Biochemistry, 50(4), 500–506.CrossRef
39.
go back to reference Fu, R., Fei, Q., Shang, L., Brigham, C. J., & Chang, H. N. (2018). Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. Journal of Industrial Microbiology & Biotechnology, 45(12), 1045–1051.CrossRef Fu, R., Fei, Q., Shang, L., Brigham, C. J., & Chang, H. N. (2018). Enhanced microbial lipid production by Cryptococcus albidus in the high-cell-density continuous cultivation with membrane cell recycling and two-stage nutrient limitation. Journal of Industrial Microbiology & Biotechnology, 45(12), 1045–1051.CrossRef
40.
go back to reference Karamerou, E. E., Theodoropoulos, C., & Webb, C. (2017). Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Engineering in Life Sciences, 17(3), 314–324.CrossRef Karamerou, E. E., Theodoropoulos, C., & Webb, C. (2017). Evaluating feeding strategies for microbial oil production from glycerol by Rhodotorula glutinis. Engineering in Life Sciences, 17(3), 314–324.CrossRef
41.
go back to reference Chang, H. N., Kim, N.-J., Kang, J., Jeong, C. M., J-d-r, C., Fei, Q., Kim, B. J., Kwon, S., Lee, S. Y., & Kim, J. (2011). Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 34(4), 419–431.CrossRef Chang, H. N., Kim, N.-J., Kang, J., Jeong, C. M., J-d-r, C., Fei, Q., Kim, B. J., Kwon, S., Lee, S. Y., & Kim, J. (2011). Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess and Biosystems Engineering, 34(4), 419–431.CrossRef
42.
go back to reference Chang, H. N., Jung, K., Choi, J.-d.-r., Lee, J. C., & Woo, H.-C. (2014). Multi-stage continuous high cell density culture systems: A review. Biotechnology Advances, 32(2), 514–525.CrossRef Chang, H. N., Jung, K., Choi, J.-d.-r., Lee, J. C., & Woo, H.-C. (2014). Multi-stage continuous high cell density culture systems: A review. Biotechnology Advances, 32(2), 514–525.CrossRef
43.
go back to reference Chang, H. N. F. Q., Choi, J. D. R., & Jung, K. S. (2011b). Economic evaluation of heterotropic microbial lipid (C. albidus) production using low-cost volatile fatty acids in MSC-HCDC bioreactor system. BIT’s first annual congress of bioenergy, pp 0425–0429. Chang, H. N. F. Q., Choi, J. D. R., & Jung, K. S. (2011b). Economic evaluation of heterotropic microbial lipid (C. albidus) production using low-cost volatile fatty acids in MSC-HCDC bioreactor system. BIT’s first annual congress of bioenergy, pp 0425–0429.
44.
go back to reference Fei, Q., Chang, H. N., Shang, L., J-d-r, C., Kim, N., & Kang, J. (2011). The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 102(3), 2695–2701.CrossRef Fei, Q., Chang, H. N., Shang, L., J-d-r, C., Kim, N., & Kang, J. (2011). The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology, 102(3), 2695–2701.CrossRef
45.
go back to reference Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25–33.CrossRef Palmqvist, E., & Hahn-Hägerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition. Bioresource Technology, 74(1), 25–33.CrossRef
46.
go back to reference Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843–4847.CrossRef Hu, C., Zhao, X., Zhao, J., Wu, S., & Zhao, Z. K. (2009). Effects of biomass hydrolysis by-products on oleaginous yeast Rhodosporidium toruloides. Bioresource Technology, 100(20), 4843–4847.CrossRef
47.
go back to reference Chao, H., Hong, W., Li-ping, L., Wen-yong, L., & Min-hua, Z. (2012). Effects of alcohol compounds on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. PLoS One, 7(10), 1–12. Chao, H., Hong, W., Li-ping, L., Wen-yong, L., & Min-hua, Z. (2012). Effects of alcohol compounds on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans. PLoS One, 7(10), 1–12.
48.
go back to reference Wang, J., Gao, Q., Zhang, H., & Bao, J. (2016). Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Bioresource Technology, 218, 892–901.CrossRef Wang, J., Gao, Q., Zhang, H., & Bao, J. (2016). Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Bioresource Technology, 218, 892–901.CrossRef
49.
go back to reference Huang, C., Wu, H., Smith, T. J., Z-j, L., Lou, W.-Y., & M-h, Z. (2012). In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnology Letters, 34(9), 1637–1642.CrossRef Huang, C., Wu, H., Smith, T. J., Z-j, L., Lou, W.-Y., & M-h, Z. (2012). In vivo detoxification of furfural during lipid production by the oleaginous yeast Trichosporon fermentans. Biotechnology Letters, 34(9), 1637–1642.CrossRef
50.
go back to reference Gong, Z., Zhou, W., Shen, H., Yang, Z., Wang, G., Zuo, Z., Hou, Y., & Zhao, Z. K. (2016). Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresource Technology, 207, 102–108.CrossRef Gong, Z., Zhou, W., Shen, H., Yang, Z., Wang, G., Zuo, Z., Hou, Y., & Zhao, Z. K. (2016). Co-fermentation of acetate and sugars facilitating microbial lipid production on acetate-rich biomass hydrolysates. Bioresource Technology, 207, 102–108.CrossRef
51.
go back to reference Sitepu, I., Selby, T., Lin, T., Zhu, S., & Boundy-Mills, K. (2014). Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. Journal of Industrial Microbiology & Biotechnology, 41(7), 1061–1070.CrossRef Sitepu, I., Selby, T., Lin, T., Zhu, S., & Boundy-Mills, K. (2014). Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species. Journal of Industrial Microbiology & Biotechnology, 41(7), 1061–1070.CrossRef
52.
go back to reference Liu, J., Pei, G., Diao, J., Chen, Z., Liu, L., Chen, L., & Zhang, W. (2017). Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Applied Microbiology and Biotechnology, 101(15), 6179–6191.CrossRef Liu, J., Pei, G., Diao, J., Chen, Z., Liu, L., Chen, L., & Zhang, W. (2017). Screening and transcriptomic analysis of Crypthecodinium cohnii mutants with high growth and lipid content using the acetyl-CoA carboxylase inhibitor sethoxydim. Applied Microbiology and Biotechnology, 101(15), 6179–6191.CrossRef
53.
go back to reference Cao, S., Zhou, X., Jin, W., Wang, F., Tu, R., Han, S., Chen, H., Chen, C., Xie, G.-J., & Ma, F. (2017). Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 244, 1400–1406.CrossRef Cao, S., Zhou, X., Jin, W., Wang, F., Tu, R., Han, S., Chen, H., Chen, C., Xie, G.-J., & Ma, F. (2017). Improving of lipid productivity of the oleaginous microalgae Chlorella pyrenoidosa via atmospheric and room temperature plasma (ARTP). Bioresource Technology, 244, 1400–1406.CrossRef
54.
go back to reference Sun, X., Li, P., Liu, X., Wang, X., Liu, Y., Turaib, A., & Cheng, Z. (2020). Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method. Journal of Cleaner Production, 250, 119509.CrossRef Sun, X., Li, P., Liu, X., Wang, X., Liu, Y., Turaib, A., & Cheng, Z. (2020). Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method. Journal of Cleaner Production, 250, 119509.CrossRef
55.
go back to reference Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15, 1–9.CrossRef Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15, 1–9.CrossRef
56.
go back to reference Kamisaka, Y., Kimura, K., Uemura, H., & Yamaoka, M. (2013). Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Applied Microbiology and Biotechnology, 97(16), 7345–7355.CrossRef Kamisaka, Y., Kimura, K., Uemura, H., & Yamaoka, M. (2013). Overexpression of the active diacylglycerol acyltransferase variant transforms Saccharomyces cerevisiae into an oleaginous yeast. Applied Microbiology and Biotechnology, 97(16), 7345–7355.CrossRef
57.
go back to reference Ledesma-Amaro, R., Santos, M. A., Jiménez, A., & Revuelta, J. L. (2014). Strain design of Ashbya gossypii for single-cell oil production. Applied and Environmental Microbiology, 80(4), 1237–1244.CrossRef Ledesma-Amaro, R., Santos, M. A., Jiménez, A., & Revuelta, J. L. (2014). Strain design of Ashbya gossypii for single-cell oil production. Applied and Environmental Microbiology, 80(4), 1237–1244.CrossRef
58.
go back to reference Kurosawa, K., Wewetzer, S. J., & Sinskey, A. J. (2013). Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnology for Biofuels, 6(1), 134.CrossRef Kurosawa, K., Wewetzer, S. J., & Sinskey, A. J. (2013). Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production. Biotechnology for Biofuels, 6(1), 134.CrossRef
59.
go back to reference Kurosawa, K., Laser, J., & Sinskey, A. J. (2015). Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnology for Biofuels, 8, 76–85.CrossRef Kurosawa, K., Laser, J., & Sinskey, A. J. (2015). Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. Biotechnology for Biofuels, 8, 76–85.CrossRef
60.
go back to reference Zhang, Y. W. L. W. (2012). Advances in the research of microalgae bioenergy. Marine Sciences, 36, 132–138. Zhang, Y. W. L. W. (2012). Advances in the research of microalgae bioenergy. Marine Sciences, 36, 132–138.
61.
go back to reference Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82, 3863–3885.CrossRef Majidian, P., Tabatabaei, M., Zeinolabedini, M., Naghshbandi, M. P., & Chisti, Y. (2018). Metabolic engineering of microorganisms for biofuel production. Renewable and Sustainable Energy Reviews, 82, 3863–3885.CrossRef
62.
go back to reference Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12(4), 387–391.CrossRef Li, Y., Han, D., Hu, G., Dauvillee, D., Sommerfeld, M., Ball, S., & Hu, Q. (2010). Chlamydomonas starchless mutant defective in ADP-glucose pyrophosphorylase hyper-accumulates triacylglycerol. Metabolic Engineering, 12(4), 387–391.CrossRef
63.
go back to reference Sahay, S., & Braganza, V. J. (2016). Microalgae based biodiesel production-current and future scenario. Journal of Experimental Science, 7, 31–35.CrossRef Sahay, S., & Braganza, V. J. (2016). Microalgae based biodiesel production-current and future scenario. Journal of Experimental Science, 7, 31–35.CrossRef
64.
go back to reference Beopoulos, A., Mrozova, Z., Thevenieau, F., Le Dall, M.-T., Hapala, I., Papanikolaou, S., Chardot, T., & Nicaud, J.-M. (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 74(24), 7779–7789.CrossRef Beopoulos, A., Mrozova, Z., Thevenieau, F., Le Dall, M.-T., Hapala, I., Papanikolaou, S., Chardot, T., & Nicaud, J.-M. (2008). Control of lipid accumulation in the yeast Yarrowia lipolytica. Applied and Environmental Microbiology, 74(24), 7779–7789.CrossRef
65.
go back to reference Kalscheuer, R., Stölting, T., & Steinbüchel, A. (2006). Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 152(9), 2529–2536.CrossRef Kalscheuer, R., Stölting, T., & Steinbüchel, A. (2006). Microdiesel: Escherichia coli engineered for fuel production. Microbiology, 152(9), 2529–2536.CrossRef
Metadata
Title
Advanced Fermentation Strategies to Enhance Lipid Production from Lignocellulosic Biomass
Authors
Qiang Fei
Yunyun Liu
Haritha Meruvu
Ziyue Jiao
Rongzhan Fu
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_10