Skip to main content
Top

2021 | OriginalPaper | Chapter

9. Metabolic Engineering of Yeast for Enhanced Natural and Exotic Fatty Acid Production

Authors : Wei Jiang, Huadong Peng, Rodrigo Ledesma Amaro, Victoria S. Haritos

Published in: Emerging Technologies for Biorefineries, Biofuels, and Value-Added Commodities

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lignocellulose-derived sugars and other biorefinery by-product streams such as glycerol and acetic acid are useful carbon feedstocks for microbes that produce lipids. Lipids have high energy density and are easily converted into versatile biofuels and valuable oleochemicals. Common, robust yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have been the most successfully exploited as cell factories for lipid production, and excellent progress has been made in productivity with the implementation of synthetic biology tools and metabolic engineering strategies. Accumulation and storage of standard fatty acids as triacylglycerols or secretion of free fatty acids has been enhanced by modification of metabolic pathways yielding maximal fatty acid titers above 100 g L−1 and productivity of 0.8 g L−1 h−1. Production of higher-value exotic fatty acids that are not native to yeast, such as short chain, hydroxylated, and cyclopropane, has great potential but requires more research into lipid synthesis pathways and new metabolic engineering strategies to achieve similar productivities as achieved for standard fatty acids. In addition, monitoring of cell viability and health, balancing cofactor demands, and minimizing stress are important strategies to avoid or reduce metabolic burden caused by engineering of cells.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhang, F., Rodriguez, S., & Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 22(6), 775–783.CrossRef Zhang, F., Rodriguez, S., & Keasling, J. D. (2011). Metabolic engineering of microbial pathways for advanced biofuels production. Current Opinion in Biotechnology, 22(6), 775–783.CrossRef
2.
go back to reference Fortman, J., Chhabra, S., Mukhopadhyay, A., Chou, H., Lee, T. S., Steen, E., & Keasling, J. D. (2008). Biofuel alternatives to ethanol: Pumping the microbial well. Trends in Biotechnology, 26(7), 375–381.CrossRef Fortman, J., Chhabra, S., Mukhopadhyay, A., Chou, H., Lee, T. S., Steen, E., & Keasling, J. D. (2008). Biofuel alternatives to ethanol: Pumping the microbial well. Trends in Biotechnology, 26(7), 375–381.CrossRef
3.
go back to reference BBC Publishing (2019). Oleochemical fatty acids: Global markets to 2023, report highlights. BBC Publishing (2019). Oleochemical fatty acids: Global markets to 2023, report highlights. 
4.
go back to reference Karmee, S. K., Linardi, D., Lee, J., & Lin, C. S. K. (2015). Conversion of lipid from food waste to biodiesel. Waste Management, 41, 169–173.CrossRef Karmee, S. K., Linardi, D., Lee, J., & Lin, C. S. K. (2015). Conversion of lipid from food waste to biodiesel. Waste Management, 41, 169–173.CrossRef
5.
go back to reference Zhou, Y. J., Kerkhoven, E. J., & Nielsen, J. (2018). Barriers and opportunities in bio-based production of hydrocarbons. Nature Energy, 3, 925.CrossRef Zhou, Y. J., Kerkhoven, E. J., & Nielsen, J. (2018). Barriers and opportunities in bio-based production of hydrocarbons. Nature Energy, 3, 925.CrossRef
6.
go back to reference Runguphan, W., & Keasling, J. D. (2014). Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabolic Engineering, 21, 103–113.CrossRef Runguphan, W., & Keasling, J. D. (2014). Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metabolic Engineering, 21, 103–113.CrossRef
7.
go back to reference Hong, K.-K., & Nielsen, J. (2012). Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences, 69(16), 2671–2690.CrossRef Hong, K.-K., & Nielsen, J. (2012). Metabolic engineering of Saccharomyces cerevisiae: A key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences, 69(16), 2671–2690.CrossRef
8.
go back to reference Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Vicente, A., Domingues, L., & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28(6), 817–830.CrossRef Mussatto, S. I., Dragone, G., Guimarães, P. M., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., Vicente, A., Domingues, L., & Teixeira, J. A. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28(6), 817–830.CrossRef
9.
go back to reference Abdel-Mawgoud, A. M., Markham, K. A., Palmer, C. M., Liu, N., Stephanopoulos, G., & Alper, H. S. (2018). Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering, 50, 192–208.CrossRef Abdel-Mawgoud, A. M., Markham, K. A., Palmer, C. M., Liu, N., Stephanopoulos, G., & Alper, H. S. (2018). Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering, 50, 192–208.CrossRef
10.
go back to reference Kamzolova, S. V., & Morgunov, I. G. (2017). Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. Bioresource Technology, 243, 433–440.CrossRef Kamzolova, S. V., & Morgunov, I. G. (2017). Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. Bioresource Technology, 243, 433–440.CrossRef
11.
go back to reference Rymowicz, W., Rywińska, A., & Marcinkiewicz, M. (2009). High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters, 31(3), 377–380.CrossRef Rymowicz, W., Rywińska, A., & Marcinkiewicz, M. (2009). High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters, 31(3), 377–380.CrossRef
12.
go back to reference Janek, T., Dobrowolski, A., Biegalska, A., & Mirończuk, A. M. (2017). Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Microbial Cell Factories, 16(1), 118.CrossRef Janek, T., Dobrowolski, A., Biegalska, A., & Mirończuk, A. M. (2017). Characterization of erythrose reductase from Yarrowia lipolytica and its influence on erythritol synthesis. Microbial Cell Factories, 16(1), 118.CrossRef
13.
go back to reference Carly, F., Vandermies, M., Telek, S., Steels, S., Thomas, S., Nicaud, J.-M., & Fickers, P. (2017). Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metabolic Engineering, 42, 19–24.CrossRef Carly, F., Vandermies, M., Telek, S., Steels, S., Thomas, S., Nicaud, J.-M., & Fickers, P. (2017). Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering. Metabolic Engineering, 42, 19–24.CrossRef
14.
go back to reference Kildegaard, K. R., Adiego-Pérez, B., Belda, D. D., Khangura, J. K., Holkenbrink, C., & Borodina, I. (2017). Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2(4), 287–294.CrossRef Kildegaard, K. R., Adiego-Pérez, B., Belda, D. D., Khangura, J. K., Holkenbrink, C., & Borodina, I. (2017). Engineering of Yarrowia lipolytica for production of astaxanthin. Synthetic and Systems Biotechnology, 2(4), 287–294.CrossRef
15.
go back to reference Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Xia, J., Nielsen, J., Deng, Z., & Liu, T. (2019). Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 52, 134–142.CrossRef Ma, T., Shi, B., Ye, Z., Li, X., Liu, M., Chen, Y., Xia, J., Nielsen, J., Deng, Z., & Liu, T. (2019). Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metabolic Engineering, 52, 134–142.CrossRef
16.
go back to reference Liu, R., Zhu, F., Lu, L., Fu, A., Lu, J., Deng, Z., & Liu, T. (2014). Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metabolic Engineering, 22, 10–21.CrossRef Liu, R., Zhu, F., Lu, L., Fu, A., Lu, J., Deng, Z., & Liu, T. (2014). Metabolic engineering of fatty acyl-ACP reductase-dependent pathway to improve fatty alcohol production in Escherichia coli. Metabolic Engineering, 22, 10–21.CrossRef
17.
go back to reference Kondo, A., Ishii, J., Hara, K. Y., Hasunuma, T., & Matsuda, F. (2013). Development of microbial cell factories for bio-refinery through synthetic bioengineering. Journal of Biotechnology, 163(2), 204–216.CrossRef Kondo, A., Ishii, J., Hara, K. Y., Hasunuma, T., & Matsuda, F. (2013). Development of microbial cell factories for bio-refinery through synthetic bioengineering. Journal of Biotechnology, 163(2), 204–216.CrossRef
18.
go back to reference Wei, Z., Zeng, G. M., Huang, F., Kosa, M., Sun, Q. N., Meng, X. Z., Huang, D. L., & Ragauskas, A. (2015). Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 99(17), 7369–7377.CrossRef Wei, Z., Zeng, G. M., Huang, F., Kosa, M., Sun, Q. N., Meng, X. Z., Huang, D. L., & Ragauskas, A. (2015). Microbial lipid production by oleaginous Rhodococci cultured in lignocellulosic autohydrolysates. Applied Microbiology and Biotechnology, 99(17), 7369–7377.CrossRef
19.
go back to reference Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O’Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. d. C., & Dale, B. E. (2016). Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 113(8), 1676–1690.CrossRef Slininger, P. J., Dien, B. S., Kurtzman, C. P., Moser, B. R., Bakota, E. L., Thompson, S. R., O’Bryan, P. J., Cotta, M. A., Balan, V., Jin, M., Sousa, L. d. C., & Dale, B. E. (2016). Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers. Biotechnology and Bioengineering, 113(8), 1676–1690.CrossRef
20.
go back to reference Verhoeven, M. D., de Valk, S. C., Daran, J. G., van Maris, A. J. A., & Pronk, J. T. (2018). Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Research, 18(8), 1–12. Verhoeven, M. D., de Valk, S. C., Daran, J. G., van Maris, A. J. A., & Pronk, J. T. (2018). Fermentation of glucose-xylose-arabinose mixtures by a synthetic consortium of single-sugar-fermenting Saccharomyces cerevisiae strains. FEMS Yeast Research, 18(8), 1–12.
21.
go back to reference Papapetridis, I., Verhoeven, M. D., Wiersma, S. J., Goudriaan, M., van Maris, A. J. A., & Pronk, J. T. (2018). Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Research, 18(6), foy056.CrossRef Papapetridis, I., Verhoeven, M. D., Wiersma, S. J., Goudriaan, M., van Maris, A. J. A., & Pronk, J. T. (2018). Laboratory evolution for forced glucose-xylose co-consumption enables identification of mutations that improve mixed-sugar fermentation by xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Research, 18(6), foy056.CrossRef
22.
go back to reference d’Espaux, L., Ghosh, A., Runguphan, W., Wehrs, M., Xu, F., Konzock, O., Dev, I., Nhan, M., Gin, J., Apel, A. R., Petzold, C. J., Singh, S., Simmons, B. A., Mukhopadhyay, A., Martin, H. G., & Keasling, J. D. (2017). Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metabolic Engineering, 42, 115–125.CrossRef d’Espaux, L., Ghosh, A., Runguphan, W., Wehrs, M., Xu, F., Konzock, O., Dev, I., Nhan, M., Gin, J., Apel, A. R., Petzold, C. J., Singh, S., Simmons, B. A., Mukhopadhyay, A., Martin, H. G., & Keasling, J. D. (2017). Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metabolic Engineering, 42, 115–125.CrossRef
23.
go back to reference Li, H., & Alper, H. S. (2016). Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnology Journal, 11(9), 1230–1240.CrossRef Li, H., & Alper, H. S. (2016). Enabling xylose utilization in Yarrowia lipolytica for lipid production. Biotechnology Journal, 11(9), 1230–1240.CrossRef
24.
go back to reference Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., & Nicaud, J. M. (2015). Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnology for Biofuels, 8, 104.CrossRef Rakicka, M., Lazar, Z., Dulermo, T., Fickers, P., & Nicaud, J. M. (2015). Lipid production by the oleaginous yeast Yarrowia lipolytica using industrial by-products under different culture conditions. Biotechnology for Biofuels, 8, 104.CrossRef
25.
go back to reference Ledesma-Amaro, R., Lazar, Z., Rakicka, M., Guo, Z., Fouchard, F., Coq, A. C., & Nicaud, J. M. (2016). Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metabolic Engineering, 38, 115–124.CrossRef Ledesma-Amaro, R., Lazar, Z., Rakicka, M., Guo, Z., Fouchard, F., Coq, A. C., & Nicaud, J. M. (2016). Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metabolic Engineering, 38, 115–124.CrossRef
26.
go back to reference Niehus, X., Crutz-Le Coq, A. M., Sandoval, G., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnology for Biofuels, 11, 1.CrossRef Niehus, X., Crutz-Le Coq, A. M., Sandoval, G., Nicaud, J. M., & Ledesma-Amaro, R. (2018). Engineering Yarrowia lipolytica to enhance lipid production from lignocellulosic materials. Biotechnology for Biofuels, 11, 1.CrossRef
27.
go back to reference Xu, J. Y., Liu, N., Qiao, K. J., Vogg, S., & Stephanopoulos, G. (2017). Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proccedings of the National Academy of Sciences of the United States of America, 114(27), E5308–E5316. Xu, J. Y., Liu, N., Qiao, K. J., Vogg, S., & Stephanopoulos, G. (2017). Application of metabolic controls for the maximization of lipid production in semicontinuous fermentation. Proccedings of the National Academy of Sciences of the United States of America, 114(27), E5308–E5316.
28.
go back to reference Pfleger, B. F., Gossing, M., & Nielsen, J. (2015). Metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 29, 1–11.CrossRef Pfleger, B. F., Gossing, M., & Nielsen, J. (2015). Metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 29, 1–11.CrossRef
29.
go back to reference Yan, Q., & Pfleger, B. F. (2019). Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 58, 35–46.CrossRef Yan, Q., & Pfleger, B. F. (2019). Revisiting metabolic engineering strategies for microbial synthesis of oleochemicals. Metabolic Engineering, 58, 35–46.CrossRef
30.
go back to reference Peng, H., He, L., & Haritos, V. S. (2018). Metabolic engineering of lipid pathways in Saccharomyces cerevisiae and staged bioprocess for enhanced lipid production and cellular physiology. Journal of Industrial Microbiology & Biotechnology, 45(8), 707–717.CrossRef Peng, H., He, L., & Haritos, V. S. (2018). Metabolic engineering of lipid pathways in Saccharomyces cerevisiae and staged bioprocess for enhanced lipid production and cellular physiology. Journal of Industrial Microbiology & Biotechnology, 45(8), 707–717.CrossRef
31.
go back to reference Li, Y., Zhao, Z. K., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.CrossRef Li, Y., Zhao, Z. K., & Bai, F. (2007). High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 41(3), 312–317.CrossRef
32.
go back to reference Shi, S., Chen, Y., Siewers, V., & Nielsen, J. (2014). Improving production of Malonyl coenzyme A-Derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio, 5(3), e01130-14.CrossRef Shi, S., Chen, Y., Siewers, V., & Nielsen, J. (2014). Improving production of Malonyl coenzyme A-Derived metabolites by abolishing Snf1-dependent regulation of Acc1. MBio, 5(3), e01130-14.CrossRef
33.
go back to reference Choi, J. W., & Da Silva, N. A. (2014). Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. Journal of Biotechnology, 187, 56–59.CrossRef Choi, J. W., & Da Silva, N. A. (2014). Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. Journal of Biotechnology, 187, 56–59.CrossRef
34.
go back to reference Chen, Y., Daviet, L., Schalk, M., Siewers, V., & Nielsen, J. (2013). Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 15, 48–54.CrossRef Chen, Y., Daviet, L., Schalk, M., Siewers, V., & Nielsen, J. (2013). Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering, 15, 48–54.CrossRef
35.
go back to reference Chen, F., Zhou, J., Shi, Z., Liu, L., Du, G., & Chen, J. (2010). Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 50(9), 1172–1179. Chen, F., Zhou, J., Shi, Z., Liu, L., Du, G., & Chen, J. (2010). Effect of acetyl-CoA synthase gene overexpression on physiological function of Saccharomyces cerevisiae. Wei Sheng Wu Xue Bao = Acta Microbiologica Sinica, 50(9), 1172–1179.
36.
go back to reference Shiba, Y., Paradise, E. M., Kirby, J., Ro, D.-K., & Keasling, J. D. (2007). Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 9(2), 160–168.CrossRef Shiba, Y., Paradise, E. M., Kirby, J., Ro, D.-K., & Keasling, J. D. (2007). Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids. Metabolic Engineering, 9(2), 160–168.CrossRef
37.
go back to reference Valle-Rodriguez, J. O., Shi, S. B., Siewers, V., & Nielsen, J. (2014). Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Applied Energy, 115, 226–232.CrossRef Valle-Rodriguez, J. O., Shi, S. B., Siewers, V., & Nielsen, J. (2014). Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid ethyl esters, an advanced biofuel, by eliminating non-essential fatty acid utilization pathways. Applied Energy, 115, 226–232.CrossRef
38.
go back to reference Chen, L., Zhang, J., & Chen, W. N. (2014). Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One, 9(1), e84853: 1-10. Chen, L., Zhang, J., & Chen, W. N. (2014). Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One, 9(1), e84853: 1-10.
39.
go back to reference Greer, M. S., Truksa, M., Deng, W., Lung, S. C., Chen, G. Q., & Weselake, R. J. (2015). Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Applied Microbiology and Biotechnology, 99(5), 2243–2253.CrossRef Greer, M. S., Truksa, M., Deng, W., Lung, S. C., Chen, G. Q., & Weselake, R. J. (2015). Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Applied Microbiology and Biotechnology, 99(5), 2243–2253.CrossRef
40.
go back to reference Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., & Stymne, H. (2000). Phospholipid: Diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proccedings of the National Academy of Sciences of the United States of America, 97(12), 6487–6492.CrossRef Dahlqvist, A., Stahl, U., Lenman, M., Banas, A., Lee, M., Sandager, L., Ronne, H., & Stymne, H. (2000). Phospholipid: Diacylglycerol acyltransferase: An enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proccedings of the National Academy of Sciences of the United States of America, 97(12), 6487–6492.CrossRef
41.
go back to reference Peng, H., Moghaddam, L., Brinin, A., Williams, B., Mundree, S., & Haritos, V. S. (2018). Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnology and Applied Biochemistry, 65(2), 138–144.CrossRef Peng, H., Moghaddam, L., Brinin, A., Williams, B., Mundree, S., & Haritos, V. S. (2018). Functional assessment of plant and microalgal lipid pathway genes in yeast to enhance microbial industrial oil production. Biotechnology and Applied Biochemistry, 65(2), 138–144.CrossRef
42.
go back to reference Tang, X., Feng, H., & Chen, W. N. (2013). Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metabolic Engineering, 16, 95–102.CrossRef Tang, X., Feng, H., & Chen, W. N. (2013). Metabolic engineering for enhanced fatty acids synthesis in Saccharomyces cerevisiae. Metabolic Engineering, 16, 95–102.CrossRef
43.
go back to reference Ferreira, R., Teixeira, P. G., Gossing, M., David, F., Siewers, V., & Nielsen, J. (2018). Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 6, 22–27.CrossRef Ferreira, R., Teixeira, P. G., Gossing, M., David, F., Siewers, V., & Nielsen, J. (2018). Metabolic engineering of Saccharomyces cerevisiae for overproduction of triacylglycerols. Metabolic Engineering Communications, 6, 22–27.CrossRef
44.
go back to reference Li, X., Guo, D., Cheng, Y., Zhu, F., Deng, Z., & Liu, T. (2014). Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering, 111(9), 1841–1852.CrossRef Li, X., Guo, D., Cheng, Y., Zhu, F., Deng, Z., & Liu, T. (2014). Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnology and Bioengineering, 111(9), 1841–1852.CrossRef
45.
go back to reference Leber, C., Polson, B., Fernandez-Moya, R., & Da Silva, N. A. (2015). Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metabolic Engineering, 28, 54–62.CrossRef Leber, C., Polson, B., Fernandez-Moya, R., & Da Silva, N. A. (2015). Overproduction and secretion of free fatty acids through disrupted neutral lipid recycle in Saccharomyces cerevisiae. Metabolic Engineering, 28, 54–62.CrossRef
46.
go back to reference Yu, T., Zhou, Y. J., Huang, M., Liu, Q., Pereira, R., David, F., & Nielsen, J. (2018). Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell, 174, 1549.CrossRef Yu, T., Zhou, Y. J., Huang, M., Liu, Q., Pereira, R., David, F., & Nielsen, J. (2018). Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell, 174, 1549.CrossRef
47.
go back to reference Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15, 1–9.CrossRef Tai, M., & Stephanopoulos, G. (2013). Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metabolic Engineering, 15, 1–9.CrossRef
48.
go back to reference Qiao, K., Imam Abidi, S. H., Liu, H., Zhang, H., Chakraborty, S., Watson, N., Kumaran Ajikumar, P., & Stephanopoulos, G. (2015). Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metabolic Engineering, 29(0), 56–65.CrossRef Qiao, K., Imam Abidi, S. H., Liu, H., Zhang, H., Chakraborty, S., Watson, N., Kumaran Ajikumar, P., & Stephanopoulos, G. (2015). Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica. Metabolic Engineering, 29(0), 56–65.CrossRef
49.
go back to reference Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P., & Stephanopoulos, G. (2017). Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 35(2), 173–177.CrossRef Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P., & Stephanopoulos, G. (2017). Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nature Biotechnology, 35(2), 173–177.CrossRef
50.
go back to reference Xu, P., Qiao, K., & Stephanopoulos, G. (2017). Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnology and Bioengineering, 114(7), 1521–1530.CrossRef Xu, P., Qiao, K., & Stephanopoulos, G. (2017). Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica. Biotechnology and Bioengineering, 114(7), 1521–1530.CrossRef
51.
go back to reference Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., Pan, A., Otoupal, P., & Alper, H. S. (2014). Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Communications, 5, 3131.CrossRef Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., Pan, A., Otoupal, P., & Alper, H. S. (2014). Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production. Nature Communications, 5, 3131.CrossRef
52.
go back to reference Liu, L. Q., Markham, K., Blazeck, J., Zhou, N. J., Leon, D., Otoupal, P., & Alper, H. S. (2015). Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metabolic Engineering, 31, 102–111.CrossRef Liu, L. Q., Markham, K., Blazeck, J., Zhou, N. J., Leon, D., Otoupal, P., & Alper, H. S. (2015). Surveying the lipogenesis landscape in Yarrowia lipolytica through understanding the function of a Mga2p regulatory protein mutant. Metabolic Engineering, 31, 102–111.CrossRef
53.
go back to reference Liu, L., Pan, A., Spofford, C., Zhou, N., & Alper, H. S. (2015). An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metabolic Engineering, 29, 36–45.CrossRef Liu, L., Pan, A., Spofford, C., Zhou, N., & Alper, H. S. (2015). An evolutionary metabolic engineering approach for enhancing lipogenesis in Yarrowia lipolytica. Metabolic Engineering, 29, 36–45.CrossRef
54.
go back to reference Ledesma-Amaro, R., Dulermo, R., Niehus, X., & Nicaud, J.-M. (2016). Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metabolic Engineering, 38, 38–46.CrossRef Ledesma-Amaro, R., Dulermo, R., Niehus, X., & Nicaud, J.-M. (2016). Combining metabolic engineering and process optimization to improve production and secretion of fatty acids. Metabolic Engineering, 38, 38–46.CrossRef
55.
go back to reference Friedlander, J., Tsakraklides, V., Kamineni, A., Greenhagen, E. H., Consiglio, A. L., MacEwen, K., Crabtree, D. V., Afshar, J., Nugent, R. L., & Hamilton, M. A. (2016). Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnology for Biofuels, 9(1), 1.CrossRef Friedlander, J., Tsakraklides, V., Kamineni, A., Greenhagen, E. H., Consiglio, A. L., MacEwen, K., Crabtree, D. V., Afshar, J., Nugent, R. L., & Hamilton, M. A. (2016). Engineering of a high lipid producing Yarrowia lipolytica strain. Biotechnology for Biofuels, 9(1), 1.CrossRef
56.
go back to reference Wasylenko, T. M., Ahn, W. S., & Stephanopoulos, G. (2015). The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metabolic Engineering, 30, 27–39.CrossRef Wasylenko, T. M., Ahn, W. S., & Stephanopoulos, G. (2015). The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica. Metabolic Engineering, 30, 27–39.CrossRef
57.
go back to reference Zhou, Y. J., Buijs, N. A., Zhu, Z., Qin, J., Siewers, V., & Nielsen, J. (2016). Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nature Communications, 7, 11709.CrossRef Zhou, Y. J., Buijs, N. A., Zhu, Z., Qin, J., Siewers, V., & Nielsen, J. (2016). Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nature Communications, 7, 11709.CrossRef
58.
go back to reference Xu, P., Qiao, K. J., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proccedings of the National Academy of Sciences of the United States of America, 113(39), 10848–10853.CrossRef Xu, P., Qiao, K. J., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proccedings of the National Academy of Sciences of the United States of America, 113(39), 10848–10853.CrossRef
59.
go back to reference Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320.CrossRef Peralta-Yahya, P. P., Zhang, F., Del Cardayre, S. B., & Keasling, J. D. (2012). Microbial engineering for the production of advanced biofuels. Nature, 488(7411), 320.CrossRef
60.
go back to reference Beld, J., Lee, D. J., & Burkart, M. D. (2015). Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering. Molecular BioSystems, 11(1), 38–59.CrossRef Beld, J., Lee, D. J., & Burkart, M. D. (2015). Fatty acid biosynthesis revisited: Structure elucidation and metabolic engineering. Molecular BioSystems, 11(1), 38–59.CrossRef
61.
go back to reference Jarboe, L. R., Royce, L. A., & Liu, P. (2013). Understanding biocatalyst inhibition by carboxylic acids. Frontiers in Microbiology, 4, 272.CrossRef Jarboe, L. R., Royce, L. A., & Liu, P. (2013). Understanding biocatalyst inhibition by carboxylic acids. Frontiers in Microbiology, 4, 272.CrossRef
62.
go back to reference Lomakin, I. B., Xiong, Y., & Steitz, T. A. (2007). The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell, 129(2), 319–332.CrossRef Lomakin, I. B., Xiong, Y., & Steitz, T. A. (2007). The crystal structure of yeast fatty acid synthase, a cellular machine with eight active sites working together. Cell, 129(2), 319–332.CrossRef
63.
go back to reference Mootz, H. D., Finking, R., & Marahiel, M. A. (2001). 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. Journal of Biological Chemistry, 276(40), 37289–37298.CrossRef Mootz, H. D., Finking, R., & Marahiel, M. A. (2001). 4′-Phosphopantetheine transfer in primary and secondary metabolism of Bacillus subtilis. Journal of Biological Chemistry, 276(40), 37289–37298.CrossRef
64.
go back to reference White, S. W., Zheng, J., Zhang, Y.-M., & Rock, C. O. (2005). The structural biology of type II fatty acid biosynthesis. Annual Review of Biochemistry, 74, 791–831.CrossRef White, S. W., Zheng, J., Zhang, Y.-M., & Rock, C. O. (2005). The structural biology of type II fatty acid biosynthesis. Annual Review of Biochemistry, 74, 791–831.CrossRef
65.
go back to reference Buchbinder, J. L., Witkowski, A., Smith, S., & Fletterick, R. J. (1995). Crystallization and preliminary diffraction studies of thioesterase II from rat mammary gland. Proteins: Structure, Function, and Bioinformatics, 22(1), 73–75.CrossRef Buchbinder, J. L., Witkowski, A., Smith, S., & Fletterick, R. J. (1995). Crystallization and preliminary diffraction studies of thioesterase II from rat mammary gland. Proteins: Structure, Function, and Bioinformatics, 22(1), 73–75.CrossRef
66.
go back to reference Dehesh, K., Edwards, P., Hayes, T., Cranmer, A. M., & Fillatti, J. (1996). Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiology, 110(1), 203–210.CrossRef Dehesh, K., Edwards, P., Hayes, T., Cranmer, A. M., & Fillatti, J. (1996). Two novel thioesterases are key determinants of the bimodal distribution of acyl chain length of Cuphea palustris seed oil. Plant Physiology, 110(1), 203–210.CrossRef
67.
go back to reference Leber, C., & Da Silva, N. A. (2014). Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnology and Bioengineering, 111(2), 347–358.CrossRef Leber, C., & Da Silva, N. A. (2014). Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnology and Bioengineering, 111(2), 347–358.CrossRef
68.
go back to reference Leber, C., Choi, J. W., Polson, B., & Da Silva, N. A. (2016). Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 113(4), 895–900.CrossRef Leber, C., Choi, J. W., Polson, B., & Da Silva, N. A. (2016). Disrupted short chain specific β-oxidation and improved synthase expression increase synthesis of short chain fatty acids in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 113(4), 895–900.CrossRef
69.
go back to reference Zhu, Z., Hu, Y., Teixeira, P. G., Pereira, R., Chen, Y., Siewers, V., & Nielsen, J. (2020). Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 3(1), 64–74.CrossRef Zhu, Z., Hu, Y., Teixeira, P. G., Pereira, R., Chen, Y., Siewers, V., & Nielsen, J. (2020). Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nature Catalysis, 3(1), 64–74.CrossRef
70.
go back to reference Xu, P., Qiao, K., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences, 113(39), 10848–10853.CrossRef Xu, P., Qiao, K., Ahn, W. S., & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceedings of the National Academy of Sciences, 113(39), 10848–10853.CrossRef
71.
go back to reference Gao, Q., Cao, X., Huang, Y.-Y., Yang, J.-L., Chen, J., Wei, L.-J., & Hua, Q. (2018). Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synthetic Biology, 7(5), 1371–1380.CrossRef Gao, Q., Cao, X., Huang, Y.-Y., Yang, J.-L., Chen, J., Wei, L.-J., & Hua, Q. (2018). Overproduction of fatty acid ethyl esters by the oleaginous yeast Yarrowia lipolytica through metabolic engineering and process optimization. ACS Synthetic Biology, 7(5), 1371–1380.CrossRef
72.
go back to reference Yamamoto, K., Kinoshita, A., & Shibahara, A. (2008). Ricinoleic acid in common vegetable oils and oil seeds. Lipids, 43(5), 457–460.CrossRef Yamamoto, K., Kinoshita, A., & Shibahara, A. (2008). Ricinoleic acid in common vegetable oils and oil seeds. Lipids, 43(5), 457–460.CrossRef
73.
go back to reference Mander, L., & Liu, H.-W. (2010). Comprehensive natural products II: Chemistry and biology (Vol. 1). Boston: Elsevier. Mander, L., & Liu, H.-W. (2010). Comprehensive natural products II: Chemistry and biology (Vol. 1). Boston: Elsevier.
74.
go back to reference Kılıç, M., Uzun, B. B., Pütün, E., & Pütün, A. E. (2013). Optimization of biodiesel production from castor oil using factorial design. Fuel Processing Technology, 111, 105–110.CrossRef Kılıç, M., Uzun, B. B., Pütün, E., & Pütün, A. E. (2013). Optimization of biodiesel production from castor oil using factorial design. Fuel Processing Technology, 111, 105–110.CrossRef
75.
go back to reference Ogunniyi, D. S. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086–1091.CrossRef Ogunniyi, D. S. (2006). Castor oil: A vital industrial raw material. Bioresource Technology, 97(9), 1086–1091.CrossRef
76.
go back to reference Ledesma-Amaro, R., & Nicaud, J.-M. (2016). Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 61, 40–50.CrossRef Ledesma-Amaro, R., & Nicaud, J.-M. (2016). Yarrowia lipolytica as a biotechnological chassis to produce usual and unusual fatty acids. Progress in Lipid Research, 61, 40–50.CrossRef
77.
go back to reference Béopoulos, A., Verbeke, J., Bordes, F., Guicherd, M., Bressy, M., Marty, A., & Nicaud, J.-M. (2014). Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 98(1), 251–262.CrossRef Béopoulos, A., Verbeke, J., Bordes, F., Guicherd, M., Bressy, M., Marty, A., & Nicaud, J.-M. (2014). Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 98(1), 251–262.CrossRef
78.
go back to reference Venegas-Calerón, M., Sayanova, O., & Napier, J. A. (2010). An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Progress in Lipid Research, 49(2), 108–119.CrossRef Venegas-Calerón, M., Sayanova, O., & Napier, J. A. (2010). An alternative to fish oils: Metabolic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids. Progress in Lipid Research, 49(2), 108–119.CrossRef
79.
go back to reference Salas Lorenzo, I., Chisaguano Tonato, A. M., de la Garza Puentes, A., Nieto, A., Herrmann, F., Dieguez, E., Castellote, A. I., López-Sabater, M. C., Rodríguez-Palmero, M., & Campoy, C. (2019). The effect of an infant formula supplemented with AA and DHA on fatty acid levels of infants with different FADS genotypes: The COGNIS study. Nutrients, 11(3), 602.CrossRef Salas Lorenzo, I., Chisaguano Tonato, A. M., de la Garza Puentes, A., Nieto, A., Herrmann, F., Dieguez, E., Castellote, A. I., López-Sabater, M. C., Rodríguez-Palmero, M., & Campoy, C. (2019). The effect of an infant formula supplemented with AA and DHA on fatty acid levels of infants with different FADS genotypes: The COGNIS study. Nutrients, 11(3), 602.CrossRef
80.
go back to reference Blondeau, N., Lipsky, R. H., Bourourou, M., Duncan, M. W., Gorelick, P. B., & Marini, A. M. (2015). Alpha-linolenic acid: An omega-3 fatty acid with neuroprotective properties—Ready for use in the stroke clinic? BioMed Research International, 2015, 519830.CrossRef Blondeau, N., Lipsky, R. H., Bourourou, M., Duncan, M. W., Gorelick, P. B., & Marini, A. M. (2015). Alpha-linolenic acid: An omega-3 fatty acid with neuroprotective properties—Ready for use in the stroke clinic? BioMed Research International, 2015, 519830.CrossRef
81.
go back to reference Domergue, F., Abbadi, A., Ott, C., Zank, T. K., Zähringer, U., & Heinz, E. (2003). Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. Journal of Biological Chemistry, 278(37), 35115–35126.CrossRef Domergue, F., Abbadi, A., Ott, C., Zank, T. K., Zähringer, U., & Heinz, E. (2003). Acyl carriers used as substrates by the desaturases and elongases involved in very long-chain polyunsaturated fatty acids biosynthesis reconstituted in yeast. Journal of Biological Chemistry, 278(37), 35115–35126.CrossRef
82.
go back to reference Domergue, F., Abbadi, A., Zähringer, U., Moreau, H., & Heinz, E. (2005). In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochemical Journal, 389(2), 483–490.CrossRef Domergue, F., Abbadi, A., Zähringer, U., Moreau, H., & Heinz, E. (2005). In vivo characterization of the first acyl-CoA Δ6-desaturase from a member of the plant kingdom, the microalga Ostreococcus tauri. Biochemical Journal, 389(2), 483–490.CrossRef
83.
go back to reference Tavares, S., Grotkjær, T., Obsen, T., Haslam, R. P., Napier, J. A., & Gunnarsson, N. (2011). Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. Applied and Environmental Microbiology, 77(5), 1854–1861.CrossRef Tavares, S., Grotkjær, T., Obsen, T., Haslam, R. P., Napier, J. A., & Gunnarsson, N. (2011). Metabolic engineering of Saccharomyces cerevisiae for production of eicosapentaenoic acid, using a novel Δ5-desaturase from Paramecium tetraurelia. Applied and Environmental Microbiology, 77(5), 1854–1861.CrossRef
84.
go back to reference Xie, D., Jackson, E. N., & Zhu, Q. (2015). Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Applied Microbiology and Biotechnology, 99(4), 1599–1610.CrossRef Xie, D., Jackson, E. N., & Zhu, Q. (2015). Sustainable source of omega-3 eicosapentaenoic acid from metabolically engineered Yarrowia lipolytica: From fundamental research to commercial production. Applied Microbiology and Biotechnology, 99(4), 1599–1610.CrossRef
85.
go back to reference Xue, Z., Sharpe, P. L., Hong, S.-P., Yadav, N. S., Xie, D., Short, D. R., Damude, H. G., Rupert, R. A., Seip, J. E., & Wang, J. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 31(8), 734.CrossRef Xue, Z., Sharpe, P. L., Hong, S.-P., Yadav, N. S., Xie, D., Short, D. R., Damude, H. G., Rupert, R. A., Seip, J. E., & Wang, J. (2013). Production of omega-3 eicosapentaenoic acid by metabolic engineering of Yarrowia lipolytica. Nature Biotechnology, 31(8), 734.CrossRef
86.
go back to reference Barry, C., 3rd, Lee, R. E., Mdluli, K., Sampson, A. E., Schroeder, B. G., Slayden, R. A., & Yuan, Y. (1998). Mycolic acids: Structure, biosynthesis and physiological functions. Progress in Lipid Research, 37(2–3), 143.CrossRef Barry, C., 3rd, Lee, R. E., Mdluli, K., Sampson, A. E., Schroeder, B. G., Slayden, R. A., & Yuan, Y. (1998). Mycolic acids: Structure, biosynthesis and physiological functions. Progress in Lipid Research, 37(2–3), 143.CrossRef
87.
go back to reference Grogan, D. W., & Cronan, J. E. (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews, 61(4), 429–441. Grogan, D. W., & Cronan, J. E. (1997). Cyclopropane ring formation in membrane lipids of bacteria. Microbiology and Molecular Biology Reviews, 61(4), 429–441.
88.
go back to reference Law, J. H. (1971). Biosynthesis of cyclopropane rings. Accounts of Chemical Research, 4(6), 199–203.CrossRef Law, J. H. (1971). Biosynthesis of cyclopropane rings. Accounts of Chemical Research, 4(6), 199–203.CrossRef
89.
go back to reference Bao, X., Katz, S., Pollard, M., & Ohlrogge, J. (2002). Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proceedings of the National Academy of Sciences, 99(10), 7172–7177.CrossRef Bao, X., Katz, S., Pollard, M., & Ohlrogge, J. (2002). Carbocyclic fatty acids in plants: Biochemical and molecular genetic characterization of cyclopropane fatty acid synthesis of Sterculia foetida. Proceedings of the National Academy of Sciences, 99(10), 7172–7177.CrossRef
90.
go back to reference Bao, X., Thelen, J. J., Bonaventure, G., & Ohlrogge, J. B. (2003). Characterization of cyclopropane fatty-acid synthase from Sterculia foetida. Journal of Biological Chemistry, 278(15), 12846–12853.CrossRef Bao, X., Thelen, J. J., Bonaventure, G., & Ohlrogge, J. B. (2003). Characterization of cyclopropane fatty-acid synthase from Sterculia foetida. Journal of Biological Chemistry, 278(15), 12846–12853.CrossRef
91.
go back to reference Rahman, M. D., Ziering, D. L., Mannarelli, S. J., Swartz, K. L., Huang, D. S., & Pascal, R. A., Jr. (1988). Effects of sulfur-containing analogs of stearic acid on growth and fatty acid biosynthesis in the protozoan Crithidia fasciculata. Journal of Medicinal Chemistry, 31(8), 1656–1659.CrossRef Rahman, M. D., Ziering, D. L., Mannarelli, S. J., Swartz, K. L., Huang, D. S., & Pascal, R. A., Jr. (1988). Effects of sulfur-containing analogs of stearic acid on growth and fatty acid biosynthesis in the protozoan Crithidia fasciculata. Journal of Medicinal Chemistry, 31(8), 1656–1659.CrossRef
92.
go back to reference Schmid, K. M.. (1999). Cyclopropane fatty acid expression in plants. Google Patents. Schmid, K. M.. (1999). Cyclopropane fatty acid expression in plants. Google Patents.
93.
go back to reference Gontier, E., Thomasset, B., Wallington, E., & Wilmer, J. (2008) Plant cyclopropane fatty acid synthase genes and uses thereof. Google Patents. Gontier, E., Thomasset, B., Wallington, E., & Wilmer, J. (2008) Plant cyclopropane fatty acid synthase genes and uses thereof. Google Patents.
94.
go back to reference Peng, H., He, L., & Haritos, V. S. (2019). Enhanced production of high-value cyclopropane fatty acid in yeast engineered for increased lipid synthesis and accumulation. Biotechnology Journal, 14(4), 1800487.CrossRef Peng, H., He, L., & Haritos, V. S. (2019). Enhanced production of high-value cyclopropane fatty acid in yeast engineered for increased lipid synthesis and accumulation. Biotechnology Journal, 14(4), 1800487.CrossRef
95.
go back to reference Czerwiec, Q., Idrissitaghki, A., Imatoukene, N., Nonus, M., Thomasset, B., Nicaud, J. M., & Rossignol, T. (2019). Optimization of cyclopropane fatty acids production in Yarrowia lipolytica. Yeast, 36(3), 143–151. Czerwiec, Q., Idrissitaghki, A., Imatoukene, N., Nonus, M., Thomasset, B., Nicaud, J. M., & Rossignol, T. (2019). Optimization of cyclopropane fatty acids production in Yarrowia lipolytica. Yeast, 36(3), 143–151.
96.
go back to reference Markham, K. A., & Alper, H. S. (2018). Engineering Yarrowia lipolytica for the production of cyclopropanated fatty acids. Journal of Industrial Microbiology & Biotechnology, 45(10), 881–888.CrossRef Markham, K. A., & Alper, H. S. (2018). Engineering Yarrowia lipolytica for the production of cyclopropanated fatty acids. Journal of Industrial Microbiology & Biotechnology, 45(10), 881–888.CrossRef
97.
go back to reference Shields-Menard, S. A., Amirsadeghi, M., French, W. T., & Boopathy, R. (2018). A review on microbial lipids as a potential biofuel. Bioresource Technology, 259, 451–460.CrossRef Shields-Menard, S. A., Amirsadeghi, M., French, W. T., & Boopathy, R. (2018). A review on microbial lipids as a potential biofuel. Bioresource Technology, 259, 451–460.CrossRef
98.
go back to reference Chandel, A. K., & Singh, O. V. (2011). Weedy lignocellulosic feedstock and microbial metabolic engineering: Advancing the generation of ‘biofuel’. Applied Microbiology and Biotechnology, 89(5), 1289–1303.CrossRef Chandel, A. K., & Singh, O. V. (2011). Weedy lignocellulosic feedstock and microbial metabolic engineering: Advancing the generation of ‘biofuel’. Applied Microbiology and Biotechnology, 89(5), 1289–1303.CrossRef
99.
go back to reference Elkins, J. G., Raman, B., & Keller, M. (2010). Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Current Opinion in Biotechnology, 21(5), 657–662.CrossRef Elkins, J. G., Raman, B., & Keller, M. (2010). Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Current Opinion in Biotechnology, 21(5), 657–662.CrossRef
100.
go back to reference Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14(3), 259–263.CrossRef Wilson, D. B. (2011). Microbial diversity of cellulose hydrolysis. Current Opinion in Microbiology, 14(3), 259–263.CrossRef
101.
go back to reference Glick, B. R. (1995). Metabolic load and heterologous gene expression. Biotechnology Advances, 13(2), 247–261.CrossRef Glick, B. R. (1995). Metabolic load and heterologous gene expression. Biotechnology Advances, 13(2), 247–261.CrossRef
102.
go back to reference Colletti, P. F., Goyal, Y., Varman, A. M., Feng, X., Wu, B., & Tang, Y. J. (2011). Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnology and Bioengineering, 108(4), 893–901.CrossRef Colletti, P. F., Goyal, Y., Varman, A. M., Feng, X., Wu, B., & Tang, Y. J. (2011). Evaluating factors that influence microbial synthesis yields by linear regression with numerical and ordinal variables. Biotechnology and Bioengineering, 108(4), 893–901.CrossRef
103.
go back to reference Poust, S., Hagen, A., Katz, L., & Keasling, J. D. (2014). Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Current Opinion in Biotechnology, 30, 32–39.CrossRef Poust, S., Hagen, A., Katz, L., & Keasling, J. D. (2014). Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Current Opinion in Biotechnology, 30, 32–39.CrossRef
104.
go back to reference Wu, G., Yan, Q., Jones, J. A., Tang, Y. J., Fong, S. S., & Koffas, M. A. (2016). Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications. Trends in Biotechnology, 34(8), 652–664.CrossRef Wu, G., Yan, Q., Jones, J. A., Tang, Y. J., Fong, S. S., & Koffas, M. A. (2016). Metabolic burden: Cornerstones in synthetic biology and metabolic engineering applications. Trends in Biotechnology, 34(8), 652–664.CrossRef
Metadata
Title
Metabolic Engineering of Yeast for Enhanced Natural and Exotic Fatty Acid Production
Authors
Wei Jiang
Huadong Peng
Rodrigo Ledesma Amaro
Victoria S. Haritos
Copyright Year
2021
DOI
https://doi.org/10.1007/978-3-030-65584-6_9