Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Advanced Surface Characterization Techniques in Nano- and Biomaterials

Authors : Ricardo A. Zamora, Cristián Gutiérrez-Cerón, Jesum Alves Fernandes, Gabriel Abarca

Published in: Nanoengineering Materials for Biomedical Uses

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Although metallic nanoparticles have been applied in various fields of biomedical engineering research for quite some time, generating new biomaterials with improved regenerative capabilities remains the cornerstone in tissue engineering and regenerative medicine. These materials, once implanted in patients, will ultimately be invaded by endogenous cells, which emphasizes the relevance of surface composition as a critical factor in determining the regenerative potency of a given material. In this chapter, we present a brief revision on fundamental concepts and an up-to-date overview for surface characterization of nano-engineered structures.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference McNamara K, Tofail SAM. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys. 2015;17(42):27981–95.CrossRef McNamara K, Tofail SAM. Nanosystems: the use of nanoalloys, metallic, bimetallic, and magnetic nanoparticles in biomedical applications. Phys Chem Chem Phys. 2015;17(42):27981–95.CrossRef
2.
go back to reference Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539–44.CrossRef Mout R, Moyano DF, Rana S, Rotello VM. Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev. 2012;41(7):2539–44.CrossRef
3.
go back to reference Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–9.CrossRef Huang X, Li L, Liu T, Hao N, Liu H, Chen D, Tang F. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano. 2011;5(7):5390–9.CrossRef
4.
go back to reference Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev. 2018;47(10):3574–620.CrossRef Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem Soc Rev. 2018;47(10):3574–620.CrossRef
5.
go back to reference Rahman IA, Padavettan V. Synthesis of Silica nanoparticles by Sol-Gel: size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. J Nanomater. 2012;2012.CrossRef Rahman IA, Padavettan V. Synthesis of Silica nanoparticles by Sol-Gel: size-dependent properties, surface modification, and applications in silica-polymer nanocompositesa review. J Nanomater. 2012;2012.CrossRef
6.
go back to reference Carlson C, Hussein SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.CrossRef Carlson C, Hussein SM, Schrand AM, Braydich-Stolle LK, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008;112(43):13608–19.CrossRef
7.
go back to reference Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, Zaleska-Medynska A, Jurga S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci. 2017;28(6):1–11. Woźniak A, Malankowska A, Nowaczyk G, Grześkowiak BF, Tuśnio K, Słomski R, Zaleska-Medynska A, Jurga S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J Mater Sci. 2017;28(6):1–11.
8.
go back to reference Alford A, Kozlovskaya V, Kharlampieva E. Small angle scattering for pharmaceutical applications: from drugs to drug delivery systems. In: Chaudhuri B, Muñoz IG, Qian S, Urban VS, editors. Biological small angle scattering: techniques, strategies and tips. Singapore: Springer; 2017. p. 239–62.CrossRef Alford A, Kozlovskaya V, Kharlampieva E. Small angle scattering for pharmaceutical applications: from drugs to drug delivery systems. In: Chaudhuri B, Muñoz IG, Qian S, Urban VS, editors. Biological small angle scattering: techniques, strategies and tips. Singapore: Springer; 2017. p. 239–62.CrossRef
9.
go back to reference Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116(18):11128–80.CrossRef Li T, Senesi AJ, Lee B. Small angle X-ray scattering for nanoparticle research. Chem Rev. 2016;116(18):11128–80.CrossRef
10.
go back to reference Di Cola E, Grillo I, Ristori S. Small angle X-ray and neutron scattering: powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics. 2016;8(2):1–16. Di Cola E, Grillo I, Ristori S. Small angle X-ray and neutron scattering: powerful tools for studying the structure of drug-loaded liposomes. Pharmaceutics. 2016;8(2):1–16.
11.
go back to reference Nawroth T, Johnson R, Krebs L, Khoshakhlagh P, Langguth P, Hellmann N, Goerigk G, Boesecke P, Bravin A, Duc GL and others. Target nanoparticles for therapy-SANS and DLS of drug carrier liposomes and polymer nanoparticles. J Phys Conf Ser. 2016;746(1):28–31. Nawroth T, Johnson R, Krebs L, Khoshakhlagh P, Langguth P, Hellmann N, Goerigk G, Boesecke P, Bravin A, Duc GL and others. Target nanoparticles for therapy-SANS and DLS of drug carrier liposomes and polymer nanoparticles. J Phys Conf Ser. 2016;746(1):28–31.
12.
go back to reference Chu B, Liu T. Characterization of nanoparticles by scattering techniques. J Nanopart Res. 2000;2(1):29–41.CrossRef Chu B, Liu T. Characterization of nanoparticles by scattering techniques. J Nanopart Res. 2000;2(1):29–41.CrossRef
13.
14.
go back to reference Roe PMSRJ, Roe RJ. Methods of X-ray and neutron scattering in polymer science. New York: Oxford University Press; 2000. p. 331. Roe PMSRJ, Roe RJ. Methods of X-ray and neutron scattering in polymer science. New York: Oxford University Press; 2000. p. 331.
15.
go back to reference Kempkens H, Uhlenbusch J. Scattering diagnostics of low-temperature plasmas (Rayleigh scattering, Thomson scattering, CARS). Plasma Sour Sci Technol. 2000;9(4):492–506.CrossRef Kempkens H, Uhlenbusch J. Scattering diagnostics of low-temperature plasmas (Rayleigh scattering, Thomson scattering, CARS). Plasma Sour Sci Technol. 2000;9(4):492–506.CrossRef
16.
go back to reference In the case of neutrons, these are dispersed by the nucleus. In the case of neutrons, these are dispersed by the nucleus.
17.
go back to reference Craievich AF. Small-angle X-ray scattering by nanostructured materials. In: Klein L, Aparicio M, Jitianu A, editors. Handbook of sol-gel science and technology: processing, characterization and applications. Cham: Springer International Publishing; 2018. p. 1185–230.CrossRef Craievich AF. Small-angle X-ray scattering by nanostructured materials. In: Klein L, Aparicio M, Jitianu A, editors. Handbook of sol-gel science and technology: processing, characterization and applications. Cham: Springer International Publishing; 2018. p. 1185–230.CrossRef
18.
go back to reference Dmitri IS, Michel HJK. Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys. 2003;66(10):1735.CrossRef Dmitri IS, Michel HJK. Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys. 2003;66(10):1735.CrossRef
19.
go back to reference Jiao Y, Akcora P. Understanding the role of grafted polystyrene chain conformation in assembly of magnetic nanoparticles. Phys Rev E. 2014;90(4):1–9.CrossRef Jiao Y, Akcora P. Understanding the role of grafted polystyrene chain conformation in assembly of magnetic nanoparticles. Phys Rev E. 2014;90(4):1–9.CrossRef
20.
go back to reference Bonini M, Fratini E, Baglioni P. SAXS study of chain-like structures formed by magnetic nanoparticles. Mat Sci Eng C. 2007;27(5–8 SPEC. ISS.):1377–81.CrossRef Bonini M, Fratini E, Baglioni P. SAXS study of chain-like structures formed by magnetic nanoparticles. Mat Sci Eng C. 2007;27(5–8 SPEC. ISS.):1377–81.CrossRef
21.
go back to reference Boldon L, Laliberte F, Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 2015;6(1):25661.CrossRef Boldon L, Laliberte F, Liu L. Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application. Nano Rev. 2015;6(1):25661.CrossRef
22.
go back to reference Londoño OM, Tancredi P, Rivas P, Muraca D, Socolovsky LM, Knobel M. Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems. Cham: Springer International Publishing; 2018. p. 37–75. Londoño OM, Tancredi P, Rivas P, Muraca D, Socolovsky LM, Knobel M. Small-angle X-ray scattering to analyze the morphological properties of nanoparticulated systems. Cham: Springer International Publishing; 2018. p. 37–75.
23.
go back to reference Agbabiaka A, Wiltfong M, Park C. Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanoparticles. 2013;2013:1–11.CrossRef Agbabiaka A, Wiltfong M, Park C. Small angle X-ray scattering technique for the particle size distribution of nonporous nanoparticles. J Nanoparticles. 2013;2013:1–11.CrossRef
24.
go back to reference Bender P, Bogart LK, Posth O, Szczerba W, Rogers SE, Castro A, Nilsson L, Zeng LJ, Sugunan A, Sommertune J and others. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method. Sci. Reports. 2017;7:1–14. Bender P, Bogart LK, Posth O, Szczerba W, Rogers SE, Castro A, Nilsson L, Zeng LJ, Sugunan A, Sommertune J and others. Structural and magnetic properties of multi-core nanoparticles analysed using a generalised numerical inversion method. Sci. Reports. 2017;7:1–14.
25.
go back to reference Ristori S, Grillo I, Lusa S, Thamm J, Valentino G, Campani V, Caraglia M, Steiniger F, Luciani P, De Rosa G. Structural characterization of self-assembling hybrid nanoparticles for Bisphosphonate delivery in tumors. Mol Pharm. 2018;15(3):1258–65.CrossRef Ristori S, Grillo I, Lusa S, Thamm J, Valentino G, Campani V, Caraglia M, Steiniger F, Luciani P, De Rosa G. Structural characterization of self-assembling hybrid nanoparticles for Bisphosphonate delivery in tumors. Mol Pharm. 2018;15(3):1258–65.CrossRef
26.
go back to reference He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W and others. Turning a Luffa protein into a self-assembled biodegradable nanoplatform for multitargeted cancer therapy. ACS Nano 2018;12(11):11664–77.CrossRef He W, Yan J, Sui F, Wang S, Su X, Qu Y, Yang Q, Guo H, Ji M, Lu W and others. Turning a Luffa protein into a self-assembled biodegradable nanoplatform for multitargeted cancer therapy. ACS Nano 2018;12(11):11664–77.CrossRef
27.
go back to reference Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mat. 2018;7(13):1–13. Lakshminarayanan R, Ye E, Young DJ, Li Z, Loh XJ. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mat. 2018;7(13):1–13.
28.
go back to reference García I, Henriksen-Lacey M, Calvo J, De Aberasturi DJ, Paz MM, Liz-Marzán LM. Size-dependent transport and cytotoxicity of mitomycin-gold nanoparticle conjugates in 2D and 3D Mammalian cell models. Bioconjugate Chem. 2019;30(1):242–52.CrossRef García I, Henriksen-Lacey M, Calvo J, De Aberasturi DJ, Paz MM, Liz-Marzán LM. Size-dependent transport and cytotoxicity of mitomycin-gold nanoparticle conjugates in 2D and 3D Mammalian cell models. Bioconjugate Chem. 2019;30(1):242–52.CrossRef
29.
go back to reference de Souza ME, Verdi CM, de Andrade ENC, Santos RCV. Chapter 12—antiviral and antimicrobial (antibacterial) potentiality of nano drugs. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Applications of targeted nano drugs and delivery systems. Elsevier; 2019. pp. 327–42. de Souza ME, Verdi CM, de Andrade ENC, Santos RCV. Chapter 12—antiviral and antimicrobial (antibacterial) potentiality of nano drugs. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Applications of targeted nano drugs and delivery systems. Elsevier; 2019. pp. 327–42.
30.
go back to reference Spagnol C, Fragal EH, Pereira AGB, Nakamura CV, Muniz EC, Follmann HDM, Silva R, Rubira AF. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. J Coll Interf. Sci. 2018;531:705–15.CrossRef Spagnol C, Fragal EH, Pereira AGB, Nakamura CV, Muniz EC, Follmann HDM, Silva R, Rubira AF. Cellulose nanowhiskers decorated with silver nanoparticles as an additive to antibacterial polymers membranes fabricated by electrospinning. J Coll Interf. Sci. 2018;531:705–15.CrossRef
31.
go back to reference Cagno V, Andreozzi P, D’Alicarnasso M, Silva PJ, Mueller M, Galloux M, Goffic RL, Jones ST, Vallino M, Hodek J and others. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17(2):195–203.CrossRef Cagno V, Andreozzi P, D’Alicarnasso M, Silva PJ, Mueller M, Galloux M, Goffic RL, Jones ST, Vallino M, Hodek J and others. Broad-spectrum non-toxic antiviral nanoparticles with a virucidal inhibition mechanism. Nat Mater. 2018;17(2):195–203.CrossRef
32.
go back to reference De Souza E, Silva JM, Hanchuk TDM, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB. Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interf. 2016;8(26):16564–72.CrossRef De Souza E, Silva JM, Hanchuk TDM, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB. Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interf. 2016;8(26):16564–72.CrossRef
33.
go back to reference Sokolowski M, Bartsch C, Spiering VJ, Prévost S, Appavou MS, Schweins R, Gradzielski M. Preparation of polymer brush grafted anionic or cationic silica nanoparticles: systematic variation of the polymer shell. Macromolecules. 2018;51(17):6936–48.CrossRef Sokolowski M, Bartsch C, Spiering VJ, Prévost S, Appavou MS, Schweins R, Gradzielski M. Preparation of polymer brush grafted anionic or cationic silica nanoparticles: systematic variation of the polymer shell. Macromolecules. 2018;51(17):6936–48.CrossRef
34.
go back to reference Yi Z, Dumée LF, Garvey CJ, Feng C, She F, Rookes JE, Mudie S, Cahill DM, Kong L. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir. 2015;31(30):8478–87.CrossRef Yi Z, Dumée LF, Garvey CJ, Feng C, She F, Rookes JE, Mudie S, Cahill DM, Kong L. A new insight into growth mechanism and kinetics of mesoporous silica nanoparticles by in situ small angle X-ray scattering. Langmuir. 2015;31(30):8478–87.CrossRef
35.
go back to reference Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F and others. Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater. 2013;25(23):4679–89.CrossRef Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, Kraehnert R, Strasser P, Rademann K, Emmerling F and others. Size-controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding. Chem Mater. 2013;25(23):4679–89.CrossRef
36.
go back to reference Varier KM, Gudeppu M, Chinnasamy A, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: antimicrobial applications and its prospects. In: Naushad M, Rajendran S, Gracia F, editors. Advanced nanostructured materials for environmental remediation. Cham: Springer International Publishing; 2019. p. 321–55.CrossRef Varier KM, Gudeppu M, Chinnasamy A, Thangarajan S, Balasubramanian J, Li Y, Gajendran B. Nanoparticles: antimicrobial applications and its prospects. In: Naushad M, Rajendran S, Gracia F, editors. Advanced nanostructured materials for environmental remediation. Cham: Springer International Publishing; 2019. p. 321–55.CrossRef
37.
go back to reference Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1–10.CrossRef Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C. Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol. 2010;8:1–10.CrossRef
38.
go back to reference Chang ZM, Wang Z, Shao D, Yue J, Xing H, Li L, Ge M, Li M, Yan H, Hu H and others. Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. ACS Appl Mater Interf 2018;10(13):10656–63.CrossRef Chang ZM, Wang Z, Shao D, Yue J, Xing H, Li L, Ge M, Li M, Yan H, Hu H and others. Shape engineering boosts magnetic mesoporous silica nanoparticle-based isolation and detection of circulating tumor cells. ACS Appl Mater Interf 2018;10(13):10656–63.CrossRef
39.
go back to reference Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018;19(7).CrossRef Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018;19(7).CrossRef
40.
go back to reference Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Targ. 2018;26(8):617–32.CrossRef Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Targ. 2018;26(8):617–32.CrossRef
41.
go back to reference Dhandapani R, Sethuraman S, Subramanian A. Nanohybrids—cancer theranostics for tiny tumor clusters. J Control Release. 2019;299:21–30.CrossRef Dhandapani R, Sethuraman S, Subramanian A. Nanohybrids—cancer theranostics for tiny tumor clusters. J Control Release. 2019;299:21–30.CrossRef
42.
go back to reference Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921–35.CrossRef Muhamad N, Plengsuriyakarn T, Na-Bangchang K. Application of active targeting nanoparticle delivery system for chemotherapeutic drugs and traditional/herbal medicines in cancer therapy: a systematic review. Int J Nanomed. 2018;13:3921–35.CrossRef
43.
go back to reference Le Goas M, Paquirissamy A, Gargouri D, Fadda G, Testard F, Aymes-Chodur C, Jubeli E, Pourcher T, Cambien B, Palacin S and others. Irradiation effects on polymer-grafted gold nanoparticles for cancer therapy. ACS Appl Biomater. 2019;2(1):144–54. Le Goas M, Paquirissamy A, Gargouri D, Fadda G, Testard F, Aymes-Chodur C, Jubeli E, Pourcher T, Cambien B, Palacin S and others. Irradiation effects on polymer-grafted gold nanoparticles for cancer therapy. ACS Appl Biomater. 2019;2(1):144–54.
44.
go back to reference Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett. 2017;12. Din MI, Arshad F, Hussain Z, Mukhtar M. Green adeptness in the synthesis and stabilization of copper nanoparticles: catalytic, antibacterial, cytotoxicity, and antioxidant activities. Nanoscale Res Lett. 2017;12.
45.
go back to reference Spencer E, Kolesnikov A, Woodfield B, Ross N. New insights about CuO nanoparticles from inelastic neutron scattering. Nanomaterials. 2019;9(3):312.CrossRef Spencer E, Kolesnikov A, Woodfield B, Ross N. New insights about CuO nanoparticles from inelastic neutron scattering. Nanomaterials. 2019;9(3):312.CrossRef
46.
go back to reference Spinozzi F, Ceccone G, Moretti P, Campanella G, Ferrero C, Combet S, Ojea-Jimenez I, Ghigna P. Structural and thermodynamic properties of nanoparticle-protein complexes: a combined SAXS and SANS study. Langmuir. 2017;33(9):2248–56.CrossRef Spinozzi F, Ceccone G, Moretti P, Campanella G, Ferrero C, Combet S, Ojea-Jimenez I, Ghigna P. Structural and thermodynamic properties of nanoparticle-protein complexes: a combined SAXS and SANS study. Langmuir. 2017;33(9):2248–56.CrossRef
47.
go back to reference Esmaeilzadeh P, Köwitsch A, Liedmann A, Menzel M, Fuhrmann B, Schmidt G, Klehm J, Groth T. Stimuli-responsive multilayers based on thiolated polysaccharides that affect fibroblast cell adhesion. ACS Appl Mater Interf. 2018;10(10):8507–18.CrossRef Esmaeilzadeh P, Köwitsch A, Liedmann A, Menzel M, Fuhrmann B, Schmidt G, Klehm J, Groth T. Stimuli-responsive multilayers based on thiolated polysaccharides that affect fibroblast cell adhesion. ACS Appl Mater Interf. 2018;10(10):8507–18.CrossRef
48.
go back to reference Bohn DR, Lobato FO, Thill AS, Steffens L, Raabe M, Donida B, Vargas CR, Moura DJ, Bernardi F, Poletto F. Artificial cerium-based proenzymes confined in lyotropic liquid crystals: synthetic strategy and on-demand activation. J Mater Chem B. 2018;6(30):4920–8.CrossRef Bohn DR, Lobato FO, Thill AS, Steffens L, Raabe M, Donida B, Vargas CR, Moura DJ, Bernardi F, Poletto F. Artificial cerium-based proenzymes confined in lyotropic liquid crystals: synthetic strategy and on-demand activation. J Mater Chem B. 2018;6(30):4920–8.CrossRef
49.
go back to reference Xu LC, Siedlecki CA. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. J Biomed Mater Res. 2017;105(3):668–78.CrossRef Xu LC, Siedlecki CA. Protein adsorption, platelet adhesion, and bacterial adhesion to polyethylene-glycol-textured polyurethane biomaterial surfaces. J Biomed Mater Res. 2017;105(3):668–78.CrossRef
50.
go back to reference Christo SN, Bachhuka A, Diener KR, Mierczynska A, Hayball JD, Vasilev K. The role of surface nanotopography and Chemistry on primary neutrophil and macrophage cellular responses. Adv Healthcare Mater. 2016;5(8):956–65.CrossRef Christo SN, Bachhuka A, Diener KR, Mierczynska A, Hayball JD, Vasilev K. The role of surface nanotopography and Chemistry on primary neutrophil and macrophage cellular responses. Adv Healthcare Mater. 2016;5(8):956–65.CrossRef
51.
go back to reference Wang PY, Bennetsen DT, Foss M, Ameringer T, Thissen H, Kingshott P. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. ACS Appl Mater Interf. 2015;7(8):4979–89.CrossRef Wang PY, Bennetsen DT, Foss M, Ameringer T, Thissen H, Kingshott P. Modulation of human mesenchymal stem cell behavior on ordered tantalum nanotopographies fabricated using colloidal lithography and glancing angle deposition. ACS Appl Mater Interf. 2015;7(8):4979–89.CrossRef
52.
go back to reference Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018;101:112–23.CrossRef Batista P, Castro PM, Madureira AR, Sarmento B, Pintado M. Recent insights in the use of nanocarriers for the oral delivery of bioactive proteins and peptides. Peptides. 2018;101:112–23.CrossRef
53.
go back to reference Li SK, Liu ZT, Li JY, Chen AY, Chai YQ, Yuan R, Zhuo Y. Enzyme-free target recycling and double-output amplification system for electrochemiluminescent assay of Mucin 1 with MoS2 nanoflowers as Co-reaction accelerator. ACS Appl Mat Interf. 2018;10(17):14483–90.CrossRef Li SK, Liu ZT, Li JY, Chen AY, Chai YQ, Yuan R, Zhuo Y. Enzyme-free target recycling and double-output amplification system for electrochemiluminescent assay of Mucin 1 with MoS2 nanoflowers as Co-reaction accelerator. ACS Appl Mat Interf. 2018;10(17):14483–90.CrossRef
54.
go back to reference Sezen H, Suzer S. XPS for chemical- and charge-sensitive analyses. Thin Solid Films. 2013;534:1–11.CrossRef Sezen H, Suzer S. XPS for chemical- and charge-sensitive analyses. Thin Solid Films. 2013;534:1–11.CrossRef
55.
go back to reference Watts JF, Wolstenholme J. Electron spectroscopy: some basic concepts. An introduction to surface analysis by XPS and AES. Chichester, UK: Wiley & Sons, Ltd.; 2003. pp. 1–15. Watts JF, Wolstenholme J. Electron spectroscopy: some basic concepts. An introduction to surface analysis by XPS and AES. Chichester, UK: Wiley & Sons, Ltd.; 2003. pp. 1–15.
56.
go back to reference Hofmann S. Introduction and outline. Auger- and X-ray photoelectron spectroscopy in materials science: a user-oriented guide. Berlin, Heidelberg: Springer; 2013. pp. 1–10. Hofmann S. Introduction and outline. Auger- and X-ray photoelectron spectroscopy in materials science: a user-oriented guide. Berlin, Heidelberg: Springer; 2013. pp. 1–10.
57.
go back to reference Aziz M, Ismail AF. X-ray photoelectron spectroscopy (XPS). Elsevier; 2017. pp. 81–93. Aziz M, Ismail AF. X-ray photoelectron spectroscopy (XPS). Elsevier; 2017. pp. 81–93.
58.
go back to reference Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interf Anal. 1979;1(1):2–11.CrossRef Seah MP, Dench WA. Quantitative electron spectroscopy of surfaces: a standard data base for electron inelastic mean free paths in solids. Surf Interf Anal. 1979;1(1):2–11.CrossRef
59.
go back to reference Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1–29.CrossRef Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018;30(29):1–29.CrossRef
60.
go back to reference Pokhriyal S, Gakkhar N, Bhatia A. Biomedical applications and toxicological effects of nanomaterials: a general approach. J Mat Sci Surf Eng. 2018;6(3):811–6. Pokhriyal S, Gakkhar N, Bhatia A. Biomedical applications and toxicological effects of nanomaterials: a general approach. J Mat Sci Surf Eng. 2018;6(3):811–6.
61.
go back to reference Sun Y, Fu Y, Luo J, Wang R, Dong Y. Silk fibroin biomaterial-functionalized carbon nanotubes for high water dispersibility and promising biomedical applications. Textile Res J. 2019;89(7):1144–52.CrossRef Sun Y, Fu Y, Luo J, Wang R, Dong Y. Silk fibroin biomaterial-functionalized carbon nanotubes for high water dispersibility and promising biomedical applications. Textile Res J. 2019;89(7):1144–52.CrossRef
62.
go back to reference Pawlik A, Socha RP, Hubalek Kalbacova M, Sulka GD. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Coll Surf B. 2018;171:58–66.CrossRef Pawlik A, Socha RP, Hubalek Kalbacova M, Sulka GD. Surface modification of nanoporous anodic titanium dioxide layers for drug delivery systems and enhanced SAOS-2 cell response. Coll Surf B. 2018;171:58–66.CrossRef
63.
go back to reference Lim WS, Chen K, Chong TW, Xiong GM, Birch WR, Pan J, Lee BH, Er PS, Salvekar AV, Venkatraman SS and others. A bilayer swellable drug-eluting ureteric stent: Localized drug delivery to treat Urothelial diseases. Biomaterials 2018;165:25–38.CrossRef Lim WS, Chen K, Chong TW, Xiong GM, Birch WR, Pan J, Lee BH, Er PS, Salvekar AV, Venkatraman SS and others. A bilayer swellable drug-eluting ureteric stent: Localized drug delivery to treat Urothelial diseases. Biomaterials 2018;165:25–38.CrossRef
64.
go back to reference Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C. 2017;79:930–49.CrossRef Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: a review. Mater Sci Eng C. 2017;79:930–49.CrossRef
65.
go back to reference Ajdnik U, Zemljič LF, Bračič M, Maver U, Plohl O, Rebol J. Functionalisation of silicone by drug-embedded chitosan nanoparticles for potential applications in otorhinolaryngology. Materials. 2019;16(6):1–20. Ajdnik U, Zemljič LF, Bračič M, Maver U, Plohl O, Rebol J. Functionalisation of silicone by drug-embedded chitosan nanoparticles for potential applications in otorhinolaryngology. Materials. 2019;16(6):1–20.
66.
go back to reference He J, Chen J, Hu G, Wang L, Zheng J, Zhan J, Zhu Y, Zhong C, Shi X, Liu S and others. Immobilization of an antimicrobial peptide on silicon surface with stable activity by click chemistry. J Mater Chem B 2017;6(1):68–74.CrossRef He J, Chen J, Hu G, Wang L, Zheng J, Zhan J, Zhu Y, Zhong C, Shi X, Liu S and others. Immobilization of an antimicrobial peptide on silicon surface with stable activity by click chemistry. J Mater Chem B 2017;6(1):68–74.CrossRef
67.
go back to reference Duta L, Ristoscu C, Stan GE, Husanu MA, Besleaga C, Chifiriuc MC, Lazar V, Bleotu C, Miculescu F, Mihailescu N and others. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assisted Pulsed Laser Evaporation for medical applications. Appl Surf Sci. 2018;441:871–83.CrossRef Duta L, Ristoscu C, Stan GE, Husanu MA, Besleaga C, Chifiriuc MC, Lazar V, Bleotu C, Miculescu F, Mihailescu N and others. New bio-active, antimicrobial and adherent coatings of nanostructured carbon double-reinforced with silver and silicon by Matrix-Assisted Pulsed Laser Evaporation for medical applications. Appl Surf Sci. 2018;441:871–83.CrossRef
68.
go back to reference Chia X, Fojtu M, Masar M. Black Phosphorus nanoparticles potentiate the anticancer effect of Oxaliplatin in ovarian cancer cell line. Adv Funct Mater. 2017;1701955(36):1–7. Chia X, Fojtu M, Masar M. Black Phosphorus nanoparticles potentiate the anticancer effect of Oxaliplatin in ovarian cancer cell line. Adv Funct Mater. 2017;1701955(36):1–7.
69.
go back to reference Todea M, Simon S, Simon V, Eniu D. XPS investigation of new solid forms of 5-fluorouracil with piperazine. J Mol Struct. 2018. Todea M, Simon S, Simon V, Eniu D. XPS investigation of new solid forms of 5-fluorouracil with piperazine. J Mol Struct. 2018.
70.
go back to reference Calvin S. XAFS for everyone. Boca Raton: Taylor & Francis Group; 2013. p. 459.CrossRef Calvin S. XAFS for everyone. Boca Raton: Taylor & Francis Group; 2013. p. 459.CrossRef
71.
go back to reference Charlet L, Manceau A. Chapter 4: Structure, formation and reactivity of hydrous oxide particles; insights from X-ray absorption spectroscopy. In: Buffle J, van Leeuwen HP, editors. Environmental particles 2. Boca Raton: CRC Press; 1993. p. 118–64. Charlet L, Manceau A. Chapter 4: Structure, formation and reactivity of hydrous oxide particles; insights from X-ray absorption spectroscopy. In: Buffle J, van Leeuwen HP, editors. Environmental particles 2. Boca Raton: CRC Press; 1993. p. 118–64.
72.
go back to reference Frenkel AI. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev. 2012;41(24):8163–78.CrossRef Frenkel AI. Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. Chem Soc Rev. 2012;41(24):8163–78.CrossRef
73.
go back to reference Frenkel AI, Wang Q, Sanchez SI, Small MW, Nuzzo RG. Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study. J Chem Phys. 2013;138(6):064202.CrossRef Frenkel AI, Wang Q, Sanchez SI, Small MW, Nuzzo RG. Short range order in bimetallic nanoalloys: an extended X-ray absorption fine structure study. J Chem Phys. 2013;138(6):064202.CrossRef
74.
go back to reference Faraci G. Cluster characterization by EXAFS spectroscopy. In: AIP 2002; 2002. pp. 173–177. Faraci G. Cluster characterization by EXAFS spectroscopy. In: AIP 2002; 2002. pp. 173–177.
75.
go back to reference Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE. XAFS spectroscopy; fundamental principles and data analysis. Topics Catal. 2000;10(3–4):143–55.CrossRef Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE. XAFS spectroscopy; fundamental principles and data analysis. Topics Catal. 2000;10(3–4):143–55.CrossRef
76.
go back to reference Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Comm 2019:6964–96.CrossRef Azharuddin M, Zhu GH, Das D, Ozgur E, Uzun L, Turner APF, Patra HK. A repertoire of biomedical applications of noble metal nanoparticles. Chem Comm 2019:6964–96.CrossRef
77.
go back to reference Kravtsova AN, Guda LV, Polozhentsev OE, Pankin IA, Soldatov AV. Xanes specroscopic diagnostics of the 3D local atomic structure of nanostructured materials. J Struct Chem. 2018;59(7):1691–706.CrossRef Kravtsova AN, Guda LV, Polozhentsev OE, Pankin IA, Soldatov AV. Xanes specroscopic diagnostics of the 3D local atomic structure of nanostructured materials. J Struct Chem. 2018;59(7):1691–706.CrossRef
78.
go back to reference Rubina MS, Said-Galiev EE, Naumkin AV, Shulenina AV, Belyakova OA, Vasil’kov AY. Preparation and characterization of biomedical collagen–chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Pol Eng Sci. 2019:1–9. Rubina MS, Said-Galiev EE, Naumkin AV, Shulenina AV, Belyakova OA, Vasil’kov AY. Preparation and characterization of biomedical collagen–chitosan scaffolds with entrapped ibuprofen and silver nanoparticles. Pol Eng Sci. 2019:1–9.
79.
go back to reference Mdlovu NV, Mavuso FA, Lin KS, Chang TW, Chen Y, Wang SSS, Wu CM, Mdlovu NB, Lin YS. Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Coll Surf A. 2018;2019(562):361–9. Mdlovu NV, Mavuso FA, Lin KS, Chang TW, Chen Y, Wang SSS, Wu CM, Mdlovu NB, Lin YS. Iron oxide-pluronic F127 polymer nanocomposites as carriers for a doxorubicin drug delivery system. Coll Surf A. 2018;2019(562):361–9.
80.
go back to reference Su FX, Zhao X, Dai C, Li YJ, Yang CX, Yan XP. A multifunctional persistent luminescent nanoprobe for imaging guided dual-stimulus responsive and triple-synergistic therapy of drug resistant tumor cells. Chem Comm. 2019;55(36):5283–6.CrossRef Su FX, Zhao X, Dai C, Li YJ, Yang CX, Yan XP. A multifunctional persistent luminescent nanoprobe for imaging guided dual-stimulus responsive and triple-synergistic therapy of drug resistant tumor cells. Chem Comm. 2019;55(36):5283–6.CrossRef
81.
go back to reference Lima TARM, Valerio MEG. X-ray absorption fine structure spectroscopy and photoluminescence study of multifunctional europium (III)-doped hydroxyapatite in the presence of cationic surfactant medium. J Luminescence 2018;201(Iii):70–76.CrossRef Lima TARM, Valerio MEG. X-ray absorption fine structure spectroscopy and photoluminescence study of multifunctional europium (III)-doped hydroxyapatite in the presence of cationic surfactant medium. J Luminescence 2018;201(Iii):70–76.CrossRef
Metadata
Title
Advanced Surface Characterization Techniques in Nano- and Biomaterials
Authors
Ricardo A. Zamora
Cristián Gutiérrez-Cerón
Jesum Alves Fernandes
Gabriel Abarca
Copyright Year
2019
DOI
https://doi.org/10.1007/978-3-030-31261-9_3

Premium Partners