Skip to main content
Top

2023 | OriginalPaper | Chapter

Advances in Chalcogenide Glasses (ChGs): Past, Present, and Future Applications

Author : Neeraj Mehta

Published in: Advances in Glass Research

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Since their birth in the early 1950s, ChGs are now recognized as multifunctional substances due to their suitability for applications in diversified fields like memory applications, fiber optics, infrared sensing devices, etc. ChGs fulfill multitask demands by playing the role of electronic materials in resistive switching, optical materials in fiber sensing, and ovonic materials for phase-change memories. This makes them one of the fascinating members of the family of glasses. A huge number of applications in different areas like in applied branches of science (e.g., environmental science, space science, medical science) in addition to the conventional branches of science (physics, chemistry, biology) attracted the different groups of technologists/scientists of various developed and developing countries around the world. This chapter is designed to cover the advances in the field of ChGs from their early developing stage to the present time. An attempt has been made to cover past, present, and feature outlooks of ChGs based devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zhou, G.-F. (2001). Materials aspects in phase change optical recording. Materials Science and Engineering A, 304, 73–80.CrossRef Zhou, G.-F. (2001). Materials aspects in phase change optical recording. Materials Science and Engineering A, 304, 73–80.CrossRef
2.
go back to reference Ohta, T. (2001). Phase-change optical memory promotes the DVD optical disk. Journal of Optoelectronics and Advanced Materials, 3, 609–626. Ohta, T. (2001). Phase-change optical memory promotes the DVD optical disk. Journal of Optoelectronics and Advanced Materials, 3, 609–626.
3.
go back to reference Andriesh, A. M., Iovu, M. S., & Shutov, S. D. (2002). Chalcogenide non-crystalline semiconductors in optoelectronics. Journal of Optoelectronics and Advanced Materials, 4, 631–647. Andriesh, A. M., Iovu, M. S., & Shutov, S. D. (2002). Chalcogenide non-crystalline semiconductors in optoelectronics. Journal of Optoelectronics and Advanced Materials, 4, 631–647.
4.
go back to reference Kolobov, A. K., & Tominaga, J. (2002). Chalcogenide glasses in optical recording: Recent progress. Journal of Optoelectronics and Advanced Materials, 4, 679–686. Kolobov, A. K., & Tominaga, J. (2002). Chalcogenide glasses in optical recording: Recent progress. Journal of Optoelectronics and Advanced Materials, 4, 679–686.
5.
go back to reference Lezel, D. (2003). Chalcogenide glasses: Survey and progress. Journal of Optoelectronics and Advanced Materials, 5, 23–24. Lezel, D. (2003). Chalcogenide glasses: Survey and progress. Journal of Optoelectronics and Advanced Materials, 5, 23–24.
6.
go back to reference Popescu, M. (2005). Disordered chalcogenide optoelectronic materials: Phenomena and applications. Journal of Optoelectronics and Advanced Materials, 7, 2189–2210. Popescu, M. (2005). Disordered chalcogenide optoelectronic materials: Phenomena and applications. Journal of Optoelectronics and Advanced Materials, 7, 2189–2210.
7.
go back to reference Mehta, N. (2006). Chalcogenide glasses in electronics and optoelectronics: A review on their applications. Journal of Scientific and Industrial Research, 65, 777–786. Mehta, N. (2006). Chalcogenide glasses in electronics and optoelectronics: A review on their applications. Journal of Scientific and Industrial Research, 65, 777–786.
8.
go back to reference Robinson, A. L. (1977). Chalcogenide glasses: A decade of dissension and progress. Science, 197, 1068–1070.CrossRef Robinson, A. L. (1977). Chalcogenide glasses: A decade of dissension and progress. Science, 197, 1068–1070.CrossRef
9.
go back to reference Homma, K., Henisch, H. K., & Ovshinsky, S. R. (1980). New experiments on threshold switching in chalcogenide and non-chalcogenide alloys. Journal of Non-Crystalline Solids, 35–36, 1105–1110.CrossRef Homma, K., Henisch, H. K., & Ovshinsky, S. R. (1980). New experiments on threshold switching in chalcogenide and non-chalcogenide alloys. Journal of Non-Crystalline Solids, 35–36, 1105–1110.CrossRef
10.
go back to reference Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered structures. Physical Review Letters, 21, 1450–1453.CrossRef Ovshinsky, S. R. (1968). Reversible electrical switching phenomena in disordered structures. Physical Review Letters, 21, 1450–1453.CrossRef
11.
go back to reference Feinleib, J., Iwasa, S., Moss, S. C., de Neufville, J. P., & Ovshinsky, S. R. (1972). Reversible optical effects in amorphous semiconductors. Journal of Non-Crystalline Solids, 8–10, 909–916. Feinleib, J., Iwasa, S., Moss, S. C., de Neufville, J. P., & Ovshinsky, S. R. (1972). Reversible optical effects in amorphous semiconductors. Journal of Non-Crystalline Solids, 8–10, 909–916.
12.
go back to reference Strand, D. (2005). Ovonics: From science to products. Journal of Optoelectronics and Advanced Materials, 7, 1679–1690. Strand, D. (2005). Ovonics: From science to products. Journal of Optoelectronics and Advanced Materials, 7, 1679–1690.
13.
go back to reference Hoddeson, L., & Garrett, P. (2018). The discovery of Ovshinsky switching and phase-change memory. Physics Today, 71, 44–51.CrossRef Hoddeson, L., & Garrett, P. (2018). The discovery of Ovshinsky switching and phase-change memory. Physics Today, 71, 44–51.CrossRef
14.
go back to reference Pfister, G. (1979). Electronic properties of chalcogenide glasses and their use in xerography. Journal of Electronic Materials, 8, 789–837.CrossRef Pfister, G. (1979). Electronic properties of chalcogenide glasses and their use in xerography. Journal of Electronic Materials, 8, 789–837.CrossRef
15.
go back to reference Springett, B. E. (1988). Application of selenium-tellurium photoconductors to the xerographic copying and printing processes. Phosphorus and Sulfur and the Related Elements, 38, 341–350.CrossRef Springett, B. E. (1988). Application of selenium-tellurium photoconductors to the xerographic copying and printing processes. Phosphorus and Sulfur and the Related Elements, 38, 341–350.CrossRef
16.
go back to reference Kasap, S. O., & Juhasz, C. (1986). Kinematical transformations in amorphous selenium alloys used in xerography. Journal of Materials Science, 21, 1329–1340.CrossRef Kasap, S. O., & Juhasz, C. (1986). Kinematical transformations in amorphous selenium alloys used in xerography. Journal of Materials Science, 21, 1329–1340.CrossRef
17.
go back to reference Chou, J.-C., Yang, S.-Y., & Wang, Y.-S. (2003). Study on the optoelectronic properties of amorphous selenium-based xerographic photoreceptors for electrophotography. Materials Chemistry and Physics, 78, 666–669.CrossRef Chou, J.-C., Yang, S.-Y., & Wang, Y.-S. (2003). Study on the optoelectronic properties of amorphous selenium-based xerographic photoreceptors for electrophotography. Materials Chemistry and Physics, 78, 666–669.CrossRef
18.
go back to reference Tanioka, K., Yamazaki, J., Shidara, K., Taketoshi, K., Kawamura, T., Ishioka, S., & Takasaki, Y. (1987). An avalanche-mode amorphous Selenium photoconductive layer for use as a camera tube target. IEEE Electron Device Letters, 8, 392–394.CrossRef Tanioka, K., Yamazaki, J., Shidara, K., Taketoshi, K., Kawamura, T., Ishioka, S., & Takasaki, Y. (1987). An avalanche-mode amorphous Selenium photoconductive layer for use as a camera tube target. IEEE Electron Device Letters, 8, 392–394.CrossRef
19.
go back to reference Tsuji, K., Ohshima, T., Hirai, T., Gotoh, N., Tanioka, K., & Shidara, K. (1991). Ultra-high-sensitive image pickup tubes using avalanche multiplication in a-Se. MRS Proceedings, 219, 507–518.CrossRef Tsuji, K., Ohshima, T., Hirai, T., Gotoh, N., Tanioka, K., & Shidara, K. (1991). Ultra-high-sensitive image pickup tubes using avalanche multiplication in a-Se. MRS Proceedings, 219, 507–518.CrossRef
20.
go back to reference Tanioka, K. (2007). The ultra-sensitive TV pickup tube from conception to recent development. Journal of Materials Science: Materials in Electronics, 18, 321–325. Tanioka, K. (2007). The ultra-sensitive TV pickup tube from conception to recent development. Journal of Materials Science: Materials in Electronics, 18, 321–325.
21.
go back to reference Zhao, W., Ji, W. G., Debrie, A., & Rowlands, J. A. (2003). Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: Characterization of a small area prototype detector. Medical Physics, 30, 254–263.CrossRef Zhao, W., Ji, W. G., Debrie, A., & Rowlands, J. A. (2003). Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: Characterization of a small area prototype detector. Medical Physics, 30, 254–263.CrossRef
22.
go back to reference Zhao, W., Hunt, D. C., Tanioka, K., & Rowlands, J. A. (2005). Amorphous selenium flat panel detectors for medical applications. Nuclear Instruments and Methods in Physics Research A, 549, 205–209.CrossRef Zhao, W., Hunt, D. C., Tanioka, K., & Rowlands, J. A. (2005). Amorphous selenium flat panel detectors for medical applications. Nuclear Instruments and Methods in Physics Research A, 549, 205–209.CrossRef
23.
go back to reference Lui, B. J. M., Hunt, D. C., Reznik, A., Tanioka, K., & Rowlands, J. A. (2006). X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations. Medical Physics, 33, 3183–3192.CrossRef Lui, B. J. M., Hunt, D. C., Reznik, A., Tanioka, K., & Rowlands, J. A. (2006). X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations. Medical Physics, 33, 3183–3192.CrossRef
24.
go back to reference Kasap, S., Frey, J. B., Belev, G., Tousignant, O., Mani, H., Laperriere, L., Reznik, A., & Rowlands, J. A. (2009). Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Physica Status Solidi b, 246, 1794–1805.CrossRef Kasap, S., Frey, J. B., Belev, G., Tousignant, O., Mani, H., Laperriere, L., Reznik, A., & Rowlands, J. A. (2009). Amorphous selenium and its alloys from early xeroradiography to high resolution X-ray image detectors and ultrasensitive imaging tubes. Physica Status Solidi b, 246, 1794–1805.CrossRef
25.
go back to reference Kuo, T.-T., Wu, C.-M., Lu, H.-H., Chan, I., Wang, K., & Leou, K.-C. (2014). Flexible x-ray imaging detector based on direct conversion in amorphous selenium. Journal of Vacuum Science and Technology A, 32, 041507.CrossRef Kuo, T.-T., Wu, C.-M., Lu, H.-H., Chan, I., Wang, K., & Leou, K.-C. (2014). Flexible x-ray imaging detector based on direct conversion in amorphous selenium. Journal of Vacuum Science and Technology A, 32, 041507.CrossRef
26.
go back to reference Huang, H., & Abbaszadeh, S. (2020). Recent developments of amorphous selenium-based x-ray detectors: A review. IEEE Sensors Journal, 20, 1694–1704.CrossRef Huang, H., & Abbaszadeh, S. (2020). Recent developments of amorphous selenium-based x-ray detectors: A review. IEEE Sensors Journal, 20, 1694–1704.CrossRef
27.
go back to reference Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M., & Wickramasinghe, H. K. (2006). Ultra-high-density phase-change storage and memory. Nature Materials, 5, 383–387.CrossRef Hamann, H. F., O’Boyle, M., Martin, Y. C., Rooks, M., & Wickramasinghe, H. K. (2006). Ultra-high-density phase-change storage and memory. Nature Materials, 5, 383–387.CrossRef
28.
go back to reference Wuttig, M., & Yamada, N. (2007). Phase-change materials for rewriteable data storage. Nature Materials, 6, 824–833.CrossRef Wuttig, M., & Yamada, N. (2007). Phase-change materials for rewriteable data storage. Nature Materials, 6, 824–833.CrossRef
29.
go back to reference Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., & Wuttig, M. (2008). A map for phase-change materials. Nature Materials, 7, 972–977.CrossRef Lencer, D., Salinga, M., Grabowski, B., Hickel, T., Neugebauer, J., & Wuttig, M. (2008). A map for phase-change materials. Nature Materials, 7, 972–977.CrossRef
30.
go back to reference Mehta, N. (2015). A chronological overview of phase-change materials. Review in Advanced Sciences and Engineering, 4, 173–182.CrossRef Mehta, N. (2015). A chronological overview of phase-change materials. Review in Advanced Sciences and Engineering, 4, 173–182.CrossRef
31.
go back to reference Feinleib, J., deNeufville, J., Moss, S. C., & Ovshinsky, S. R. (1971). Rapid reversible light-induced crystallization of amorphous semiconductors. Applied Physics Letters, 18, 254–256. Feinleib, J., deNeufville, J., Moss, S. C., & Ovshinsky, S. R. (1971). Rapid reversible light-induced crystallization of amorphous semiconductors. Applied Physics Letters, 18, 254–256.
32.
go back to reference Kageyama, Y., Iwasaki, H., Hariagaya, M., & Ide, Y. (1996). Compact disc erasable (CD-E) with Ag–In–Sb–Te phase-change recording material. Japanese Journal of Applied Physics, 35, 500–501.CrossRef Kageyama, Y., Iwasaki, H., Hariagaya, M., & Ide, Y. (1996). Compact disc erasable (CD-E) with Ag–In–Sb–Te phase-change recording material. Japanese Journal of Applied Physics, 35, 500–501.CrossRef
33.
go back to reference Peterson, L. V., Rijpers, J. C. N., & Hellmig, J. (2004). Phase-change media for ultrahigh-speed digital versatile disc recording. Japanese Journal of Applied Physics, 43, 4974–4977.CrossRef Peterson, L. V., Rijpers, J. C. N., & Hellmig, J. (2004). Phase-change media for ultrahigh-speed digital versatile disc recording. Japanese Journal of Applied Physics, 43, 4974–4977.CrossRef
34.
go back to reference Nishiuchi, K., Yamada, N., Kawahara, K., & Kojima, R. (2007). Effect of dielectric material filmson crystallization characteristics of Ge2Sb2Te5 phase-change memory film. Japanese Journal of Applied Physics, 46, 7421–7423.CrossRef Nishiuchi, K., Yamada, N., Kawahara, K., & Kojima, R. (2007). Effect of dielectric material filmson crystallization characteristics of Ge2Sb2Te5 phase-change memory film. Japanese Journal of Applied Physics, 46, 7421–7423.CrossRef
35.
go back to reference Elliott, S. R. (2015). Chalcogenide phase-change materials: Past and future. International Journal of Applied Glass Science, 6, 15–18.CrossRef Elliott, S. R. (2015). Chalcogenide phase-change materials: Past and future. International Journal of Applied Glass Science, 6, 15–18.CrossRef
36.
go back to reference Lotnyk, A., Behrens, M., & Rauschenbach, B. (2019). Phase change thin films for non-volatile memory applications. Nanoscale Advances, 1, 3836–3857.CrossRef Lotnyk, A., Behrens, M., & Rauschenbach, B. (2019). Phase change thin films for non-volatile memory applications. Nanoscale Advances, 1, 3836–3857.CrossRef
37.
go back to reference Cao, T., & Cen, M. (2019). Fundamentals and applications of chalcogenide phase-change material photonics. Advanced and Theory Simulations, 2, 1900094.CrossRef Cao, T., & Cen, M. (2019). Fundamentals and applications of chalcogenide phase-change material photonics. Advanced and Theory Simulations, 2, 1900094.CrossRef
38.
go back to reference Wang, J., Wang, L., & Liu, J. (2020). Overview of phase-change materials based photonic devices. IEEE Access, 8, 121211–121245.CrossRef Wang, J., Wang, L., & Liu, J. (2020). Overview of phase-change materials based photonic devices. IEEE Access, 8, 121211–121245.CrossRef
39.
go back to reference Xue, Y., Yan, S., Lv, S., Song, S., & Song, Z. (2021). Ta-doped Sb2Te allows ultrafast phase-change memory with excellent high-temperature operation characteristics. Nano-Micro Letters, 13, 33.CrossRef Xue, Y., Yan, S., Lv, S., Song, S., & Song, Z. (2021). Ta-doped Sb2Te allows ultrafast phase-change memory with excellent high-temperature operation characteristics. Nano-Micro Letters, 13, 33.CrossRef
40.
go back to reference Wang, G., Shen, X., Nie, Q., Wang, H., Lu, Y., & Shi, D. (2016). Improved thermal stability of C-doped Sb2Te films by increasing degree of disorder for memory application. Thin Solid Films, 615, 345–350.CrossRef Wang, G., Shen, X., Nie, Q., Wang, H., Lu, Y., & Shi, D. (2016). Improved thermal stability of C-doped Sb2Te films by increasing degree of disorder for memory application. Thin Solid Films, 615, 345–350.CrossRef
41.
go back to reference Wu, L., Li, T., Ji, X., Song, S., & Song, Z. (2020). Investigation on thermal stability of vanadium-doped Sb2Te phase change material. Journal of Materials Science: Materials in Electronics, 31, 5879–5885. Wu, L., Li, T., Ji, X., Song, S., & Song, Z. (2020). Investigation on thermal stability of vanadium-doped Sb2Te phase change material. Journal of Materials Science: Materials in Electronics, 31, 5879–5885.
42.
go back to reference Liu, B., Liu, W., Li, Z., Li, K., Wu, L., Zhou, J., Song, Z., & Sun, Z. (2020). Y-doped Sb2Te3 phase-change materials: Toward a universal memory. ACS Applied Materials & Interfaces, 12, 20672–20679.CrossRef Liu, B., Liu, W., Li, Z., Li, K., Wu, L., Zhou, J., Song, Z., & Sun, Z. (2020). Y-doped Sb2Te3 phase-change materials: Toward a universal memory. ACS Applied Materials & Interfaces, 12, 20672–20679.CrossRef
43.
go back to reference Lu, Y., Song, S., Song, Z., Rao, F., Wu, L., Zhu, M., Liu, B., & Yao, D. (2012). Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications. Applied Physics Letters, 100, 193114.CrossRef Lu, Y., Song, S., Song, Z., Rao, F., Wu, L., Zhu, M., Liu, B., & Yao, D. (2012). Investigation of CuSb4Te2 alloy for high-speed phase change random access memory applications. Applied Physics Letters, 100, 193114.CrossRef
44.
go back to reference Zheng, Y., Cheng, Y., Zhu, M., Ji, X., Wang, Q., Lv, S., Song, W., Song, S., Cheng, Y., Ren, K., & Song, Z. (2016). A candidate Zr-doped Sb2Te alloy for phase change memory application. Applied Physics Letters, 108, 052107.CrossRef Zheng, Y., Cheng, Y., Zhu, M., Ji, X., Wang, Q., Lv, S., Song, W., Song, S., Cheng, Y., Ren, K., & Song, Z. (2016). A candidate Zr-doped Sb2Te alloy for phase change memory application. Applied Physics Letters, 108, 052107.CrossRef
45.
go back to reference Wang, Y., Wang, T., Zheng, Y., Liu, G., Li, T., Lv, S.-L., Song, W., Song, S., Cheng, Y., Ren, K., & Song, Z. (2018). Atomic scale insight into the effects of aluminum doped Sb2Te for phase change memory application. Science and Reports, 8, 15136.CrossRef Wang, Y., Wang, T., Zheng, Y., Liu, G., Li, T., Lv, S.-L., Song, W., Song, S., Cheng, Y., Ren, K., & Song, Z. (2018). Atomic scale insight into the effects of aluminum doped Sb2Te for phase change memory application. Science and Reports, 8, 15136.CrossRef
46.
go back to reference Chen, X., Zheng, Y., Zhu, M., Ren, K., Wang, Y., Li, T., Liu, G., Guo, T., Wu, L., Liu, X., Cheng, Y., & Song, Z. (2018). Scandium doping brings speed improvement in Sb2Te alloy for phase change random access memory application. Scientific Reports, 8, 6839. Chen, X., Zheng, Y., Zhu, M., Ren, K., Wang, Y., Li, T., Liu, G., Guo, T., Wu, L., Liu, X., Cheng, Y., & Song, Z. (2018). Scandium doping brings speed improvement in Sb2Te alloy for phase change random access memory application. Scientific Reports, 8, 6839.
47.
go back to reference Guo, S., Xu, L., Zhang, J., Hu, Z., Li, T., Wu, L., Song, Z., & Chu, J. (2016). Enhanced crystallization behaviors of Silicon-doped Sb2Te films: Optical evidences. Science and Reports, 6, 33639.CrossRef Guo, S., Xu, L., Zhang, J., Hu, Z., Li, T., Wu, L., Song, Z., & Chu, J. (2016). Enhanced crystallization behaviors of Silicon-doped Sb2Te films: Optical evidences. Science and Reports, 6, 33639.CrossRef
48.
go back to reference Kim, J. H., Byeon, D.-S., Ko, D.-H., & Park, J. H. (2017). Se-doped Ge10Sb90 for highly reliable phase-change memory with low operation power. Journal of Materials Research, 32, 2449–2455.CrossRef Kim, J. H., Byeon, D.-S., Ko, D.-H., & Park, J. H. (2017). Se-doped Ge10Sb90 for highly reliable phase-change memory with low operation power. Journal of Materials Research, 32, 2449–2455.CrossRef
49.
go back to reference Zhao, J., Yuan, Z., Song, W.-X., & Song, Z. (2022). High performance of Er-doped Sb2Te material used in phase change memory. Journal of Alloys and Compounds, 889, 161701.CrossRef Zhao, J., Yuan, Z., Song, W.-X., & Song, Z. (2022). High performance of Er-doped Sb2Te material used in phase change memory. Journal of Alloys and Compounds, 889, 161701.CrossRef
50.
go back to reference Song, Z., Zhan, Y., Cai, D., Liu, B., Chen, Y., & Ren, J. (2015). A phase change memory chip based on TiSbTe alloy in 40-nm standard CMOS technology. Nano-Micro Letters, 7, 172–176.CrossRef Song, Z., Zhan, Y., Cai, D., Liu, B., Chen, Y., & Ren, J. (2015). A phase change memory chip based on TiSbTe alloy in 40-nm standard CMOS technology. Nano-Micro Letters, 7, 172–176.CrossRef
51.
go back to reference Ding, K., Ren, K., Rao, F., Song, Z., Wu, L., Liu, B., & Feng, S. (2014). Study on the Cu-doped Ge2Sb2Te5 for low-power phase change memory. Materials Letters, 125, 143–146.CrossRef Ding, K., Ren, K., Rao, F., Song, Z., Wu, L., Liu, B., & Feng, S. (2014). Study on the Cu-doped Ge2Sb2Te5 for low-power phase change memory. Materials Letters, 125, 143–146.CrossRef
52.
go back to reference Meng, Y., Cao, T., & Long, Y. (2020). Progress in metasurfaces based on Ge–Sb–Te phase-change materials. Journal of Applied Physics, 128, 140904.CrossRef Meng, Y., Cao, T., & Long, Y. (2020). Progress in metasurfaces based on Ge–Sb–Te phase-change materials. Journal of Applied Physics, 128, 140904.CrossRef
53.
go back to reference Behrens, M., Lotnyk, A., Bryja, H., Gerlach, J. W., & Rauschenbach, B. (2020). Structural transitions in Ge2Sb2Te5 phase change memory thin films induced by nanosecond UV optical pulses. Materials, 13, 2082.CrossRef Behrens, M., Lotnyk, A., Bryja, H., Gerlach, J. W., & Rauschenbach, B. (2020). Structural transitions in Ge2Sb2Te5 phase change memory thin films induced by nanosecond UV optical pulses. Materials, 13, 2082.CrossRef
54.
go back to reference Shi, X., Chen, C., Liu, S., & Li, G. (2020). Nonvolatile, reconfigurable and narrowband mid-infrared filter based on surface lattice resonance in phase-change Ge2Sb2Te5. Nanomaterials, 10, 2530.CrossRef Shi, X., Chen, C., Liu, S., & Li, G. (2020). Nonvolatile, reconfigurable and narrowband mid-infrared filter based on surface lattice resonance in phase-change Ge2Sb2Te5. Nanomaterials, 10, 2530.CrossRef
55.
go back to reference Chen, C., Chen, S., Lobo, R. P. S. M., Maciel-Escudero, C., Lewin, M., Taubner, T., Xiong, W., Xu, M., Zhang, X., Miao, X., Li, P., & Hillenbrand, R. (2020). Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photonics, 7, 3499–3506.CrossRef Chen, C., Chen, S., Lobo, R. P. S. M., Maciel-Escudero, C., Lewin, M., Taubner, T., Xiong, W., Xu, M., Zhang, X., Miao, X., Li, P., & Hillenbrand, R. (2020). Terahertz nanoimaging and nanospectroscopy of chalcogenide phase-change materials. ACS Photonics, 7, 3499–3506.CrossRef
56.
go back to reference Kozicki, M. N., Yun, M., Yang, S. J., Aberouette, J. P., & Bird, J. P. (2000). Nanoscale effects in devices based on chalcogenide solid solutions. Superlattices and Microstructures, 27, 485–488.CrossRef Kozicki, M. N., Yun, M., Yang, S. J., Aberouette, J. P., & Bird, J. P. (2000). Nanoscale effects in devices based on chalcogenide solid solutions. Superlattices and Microstructures, 27, 485–488.CrossRef
57.
go back to reference Sakamoto, T., Sunamura, H., & Kawaura, H. (2003). Nanometer-scale switches using copper sulfide. Applied Physics Letters, 82, 3032.CrossRef Sakamoto, T., Sunamura, H., & Kawaura, H. (2003). Nanometer-scale switches using copper sulfide. Applied Physics Letters, 82, 3032.CrossRef
58.
go back to reference Brandily, M.-L., Monbet, V., Bureau, B., Boussard-Pledel, C., Loreal, O., Adam, J.-L., & Sire, O. (2011). Identification of foodborne pathogens within food matrices by IR spectroscopy. Sensors & Actuators, B: Chemical, 160, 202–206. Brandily, M.-L., Monbet, V., Bureau, B., Boussard-Pledel, C., Loreal, O., Adam, J.-L., & Sire, O. (2011). Identification of foodborne pathogens within food matrices by IR spectroscopy. Sensors & Actuators, B: Chemical, 160, 202–206.
59.
go back to reference Charpentier, F., Troles, J., Coulombier, Q., Brilland, L., Houizot, P., Smektala, F., Boussard-Pledel, C., Nazabal, V., Thibaud, N., Le Pierres, K., & Bureau, B. (2009). CO2 detection using microstructured chalcogenide fibers. Sensor Letters, 7, 745–749.CrossRef Charpentier, F., Troles, J., Coulombier, Q., Brilland, L., Houizot, P., Smektala, F., Boussard-Pledel, C., Nazabal, V., Thibaud, N., Le Pierres, K., & Bureau, B. (2009). CO2 detection using microstructured chalcogenide fibers. Sensor Letters, 7, 745–749.CrossRef
60.
go back to reference Charpentier, F., Starecki, F., Doualan, J. L., Jovari, P., Camy, P., Troles, J., Belin, S., Bureau, B., & Nazabal, V. (2013). Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers. Materials Letters, 101, 21–24.CrossRef Charpentier, F., Starecki, F., Doualan, J. L., Jovari, P., Camy, P., Troles, J., Belin, S., Bureau, B., & Nazabal, V. (2013). Mid-IR luminescence of Dy3+ and Pr3+ doped Ga5Ge20Sb10S(Se)65 bulk glasses and fibers. Materials Letters, 101, 21–24.CrossRef
61.
go back to reference Tanioka, K. (2009). High-Gain avalanche rushing amorphous photoconductor (HARP) detector. Nuclear Instruments and Methods in Physics Research A, 608, 15–17.CrossRef Tanioka, K. (2009). High-Gain avalanche rushing amorphous photoconductor (HARP) detector. Nuclear Instruments and Methods in Physics Research A, 608, 15–17.CrossRef
62.
go back to reference Bissonnette, M., Hansroul, M., Masson, E., Savard, S., Cadieux, S., Warmoes, P., Gravel, D., Agopyan, J., Polischuk, B., Haerer, W., Mertelmeier, T., Lo, J. Y., Chen, Y., Dobbins, J. T., III., Jesneck, J. L., & Singh, S. (2005). Digital breast tomosynthesis using an amorphous selenium flat panel detector. Proceedings of SPIE, 5745, 529–540.CrossRef Bissonnette, M., Hansroul, M., Masson, E., Savard, S., Cadieux, S., Warmoes, P., Gravel, D., Agopyan, J., Polischuk, B., Haerer, W., Mertelmeier, T., Lo, J. Y., Chen, Y., Dobbins, J. T., III., Jesneck, J. L., & Singh, S. (2005). Digital breast tomosynthesis using an amorphous selenium flat panel detector. Proceedings of SPIE, 5745, 529–540.CrossRef
63.
go back to reference Hu, Y. H., & Zhao, W. (2014). The effect of amorphous selenium detector thickness on dual-energy digital breast imaging. Medical Physics, 41, 111904.CrossRef Hu, Y. H., & Zhao, W. (2014). The effect of amorphous selenium detector thickness on dual-energy digital breast imaging. Medical Physics, 41, 111904.CrossRef
64.
go back to reference Danto, S., Houizot, P., Boussard-Pledel, C., Zhang, X.-H., Smektala, F., & Lucas, J. (2016). A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Advanced Functional Materials, 16, 1847–1852. Danto, S., Houizot, P., Boussard-Pledel, C., Zhang, X.-H., Smektala, F., & Lucas, J. (2016). A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Advanced Functional Materials, 16, 1847–1852.
65.
go back to reference Houizot, P., Boussard-Pledel, C., Faber, A. J., Cheng, L. K., Bureau, B., Van Nijnatten, P. A., Gielesen, W. L. M., Pereira do Carmo, J., & Lucas, J. (2007). Infrared single mode chalcogenide glass fiber for space. Optics Express, 15, 12529–12538. Houizot, P., Boussard-Pledel, C., Faber, A. J., Cheng, L. K., Bureau, B., Van Nijnatten, P. A., Gielesen, W. L. M., Pereira do Carmo, J., & Lucas, J. (2007). Infrared single mode chalcogenide glass fiber for space. Optics Express, 15, 12529–12538.
66.
go back to reference Wilhelm, A. A., Boussard-Pledel, C., Coulombier, Q., Lucas, J., Bureau, B., & Lucas, P. (2007). Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials, 19, 3796–3800.CrossRef Wilhelm, A. A., Boussard-Pledel, C., Coulombier, Q., Lucas, J., Bureau, B., & Lucas, P. (2007). Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Advanced Materials, 19, 3796–3800.CrossRef
67.
go back to reference Cha, D. H., Kim, H.-J., Hwang, Y., Jeong, J. C., & Kim, J.-H. (2012). Fabrication of molded chalcogenide-glass lens for thermal imaging applications. Applied Optics, 51, 5649–5656.CrossRef Cha, D. H., Kim, H.-J., Hwang, Y., Jeong, J. C., & Kim, J.-H. (2012). Fabrication of molded chalcogenide-glass lens for thermal imaging applications. Applied Optics, 51, 5649–5656.CrossRef
68.
go back to reference Michel, K., Bureau, B., Boussard-Pledel, C., Jouan, T., Adam, J. L., Staubmann, K., & Baumann, T. (2004). Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sensors Actuators B, 101, 252–259.CrossRef Michel, K., Bureau, B., Boussard-Pledel, C., Jouan, T., Adam, J. L., Staubmann, K., & Baumann, T. (2004). Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sensors Actuators B, 101, 252–259.CrossRef
69.
go back to reference Blanchard, F., Nkeck, J. E., Matte, D., Nechache, R., & Cook, D. G. (2019). A low-cost terahertz camera. Applied Sciences, 9, 2531. Blanchard, F., Nkeck, J. E., Matte, D., Nechache, R., & Cook, D. G. (2019). A low-cost terahertz camera. Applied Sciences, 9, 2531.
70.
go back to reference Baudet, E., Ledemi, Y., Larochelle, P., & Messaddeq, Y. (2019). 3D-printing of arsenic sulfide chalcogenide glasses. Optical Materials Express, 9, 2307–2317.CrossRef Baudet, E., Ledemi, Y., Larochelle, P., & Messaddeq, Y. (2019). 3D-printing of arsenic sulfide chalcogenide glasses. Optical Materials Express, 9, 2307–2317.CrossRef
71.
go back to reference Carcreff, J., Chevire, F., Galdo, E., Lebullenger, R., Gautier, A., Adam, J. L., Coq, D. L., Brilland, L., Chahal, R., Renversez, G., & Troles, J. (2021). Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform. Optical Materials Express, 11, 198–209.CrossRef Carcreff, J., Chevire, F., Galdo, E., Lebullenger, R., Gautier, A., Adam, J. L., Coq, D. L., Brilland, L., Chahal, R., Renversez, G., & Troles, J. (2021). Mid-infrared hollow core fiber drawn from a 3D printed chalcogenide glass preform. Optical Materials Express, 11, 198–209.CrossRef
72.
go back to reference Carcreff, J., Chevire, F., Lebullenger, R., Gautier, A., Chahal, R., Adam, J. L., Calvez, L., Brilland, L., Galdo, E., Coq, D. L., Renversez, G., & Troles, J. (2021). Investigation on chalcogenide glass additive manufacturing for shaping mid-infrared optical components and microstructured optical fibers. Crystals, 11, 228.CrossRef Carcreff, J., Chevire, F., Lebullenger, R., Gautier, A., Chahal, R., Adam, J. L., Calvez, L., Brilland, L., Galdo, E., Coq, D. L., Renversez, G., & Troles, J. (2021). Investigation on chalcogenide glass additive manufacturing for shaping mid-infrared optical components and microstructured optical fibers. Crystals, 11, 228.CrossRef
73.
go back to reference Zhang, H., Zhou, L., Xu, J., Wang, N., Hu, H., Lu, L., Rahman, B. M. A., & Chen, J. (2019). Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. Science Bulletin, 64, 782–789.CrossRef Zhang, H., Zhou, L., Xu, J., Wang, N., Hu, H., Lu, L., Rahman, B. M. A., & Chen, J. (2019). Nonvolatile waveguide transmission tuning with electrically-driven ultra-small GST phase-change material. Science Bulletin, 64, 782–789.CrossRef
74.
go back to reference Abdollahramezani, S., Hemmatyar, O., Taghinejad, H., Krasnok, A., Kiarashinejad, Y., Zandehshahvar, M., Alu, A., & Adibi, A. (2020). Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189–1241.CrossRef Abdollahramezani, S., Hemmatyar, O., Taghinejad, H., Krasnok, A., Kiarashinejad, Y., Zandehshahvar, M., Alu, A., & Adibi, A. (2020). Tunable nanophotonics enabled by chalcogenide phase-change materials. Nanophotonics, 9, 1189–1241.CrossRef
75.
go back to reference Lotz, M., Needham, J., Jakobsen, M. H., & Taboryski, R. (2019). Nanoimprinting reflow modified moth-eye structures in chalcogenide glass for enhanced broadband antireflection in the mid-infrared. Optics Letters, 44, 4383–4386.CrossRef Lotz, M., Needham, J., Jakobsen, M. H., & Taboryski, R. (2019). Nanoimprinting reflow modified moth-eye structures in chalcogenide glass for enhanced broadband antireflection in the mid-infrared. Optics Letters, 44, 4383–4386.CrossRef
76.
go back to reference Qu, Y., Li, Q., Cai, L., Pan, M., Ghosh, P., Du, K., & Qiu, M. (2018). Thermal camouflage based on the phase changing material GST. Light: Science & Applications, 7, 26. Qu, Y., Li, Q., Cai, L., Pan, M., Ghosh, P., Du, K., & Qiu, M. (2018). Thermal camouflage based on the phase changing material GST. Light: Science & Applications, 7, 26.
77.
go back to reference Dai, S., Wang, Y., Peng, X., Zhang, P., Wang, X., & Xu, Y. (2018). A review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Applied Sciences, 8, 707.CrossRef Dai, S., Wang, Y., Peng, X., Zhang, P., Wang, X., & Xu, Y. (2018). A review of mid-infrared supercontinuum generation in chalcogenide glass fibers. Applied Sciences, 8, 707.CrossRef
78.
go back to reference Kedenburg, S., Steinle, T., Morz, F., Steinmann, A., & Giessen, H. (2015). High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. Optics Letters, 40, 2668–2671.CrossRef Kedenburg, S., Steinle, T., Morz, F., Steinmann, A., & Giessen, H. (2015). High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber. Optics Letters, 40, 2668–2671.CrossRef
79.
go back to reference Wang, Y., Dai, S., Han, X., Zhang, P., Liu, Y., Wang, X., & Sun, S. (2018). Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2S step-index fibers. Optics Communication, 410, 410–415.CrossRef Wang, Y., Dai, S., Han, X., Zhang, P., Liu, Y., Wang, X., & Sun, S. (2018). Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2S step-index fibers. Optics Communication, 410, 410–415.CrossRef
80.
go back to reference Yu, Y., Zhang, B., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D.-Y., Madden, S., & Luther-Davies, B. (2015) 1.8–10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Optics Letters, 40, 1081–1084. Yu, Y., Zhang, B., Gai, X., Zhai, C., Qi, S., Guo, W., Yang, Z., Wang, R., Choi, D.-Y., Madden, S., & Luther-Davies, B. (2015) 1.8–10 µm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power. Optics Letters, 40, 1081–1084.
81.
go back to reference Zhang, B., Yu, Y., Zhai, C., Qi, S., Wang, Y., Yang, A., Gai, X., Wang, R., Yang, Z., & Luther-Davies, B. (2016). High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. Journal of the American Ceramic Society, 99, 2565–2568. Zhang, B., Yu, Y., Zhai, C., Qi, S., Wang, Y., Yang, A., Gai, X., Wang, R., Yang, Z., & Luther-Davies, B. (2016). High brightness 2.2–12 µm mid-infrared supercontinuum generation in a nontoxic chalcogenide step-index fiber. Journal of the American Ceramic Society, 99, 2565–2568.
82.
go back to reference Luo, B., Wang, Y., Dai, S., Sun, Y., Zhang, P., Wang, X., & Chen, F. (2017). Midinfrared supercontinuum generation in As2Se3–As2S3 chalcogenide glass fiber with high NA. Journal of Lightwave Technology, 35, 2464–2469.CrossRef Luo, B., Wang, Y., Dai, S., Sun, Y., Zhang, P., Wang, X., & Chen, F. (2017). Midinfrared supercontinuum generation in As2Se3–As2S3 chalcogenide glass fiber with high NA. Journal of Lightwave Technology, 35, 2464–2469.CrossRef
83.
go back to reference Kang, M., Malendevych, T., Yin, G., Murray, I. B., Richardson, M. C., Hu, J., Mingareev, I., & Richardson, K. A. (2019). Scalable laser-written Ge–As–Pb–Se chalcogenide glass-ceramic films and the realization of infrared gradient refractive index elements. Proceedings of SPIE, 10998, 109980E. Kang, M., Malendevych, T., Yin, G., Murray, I. B., Richardson, M. C., Hu, J., Mingareev, I., & Richardson, K. A. (2019). Scalable laser-written Ge–As–Pb–Se chalcogenide glass-ceramic films and the realization of infrared gradient refractive index elements. Proceedings of SPIE, 10998, 109980E.
84.
go back to reference Novak, S., Lin, P., Li, C., Lumdee, C., Hu, J., Agarwal, A., Kik, P., Deng, W., & Richardson, K. (2017). Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray. ACS Applied Materials & Interfaces, 9, 26990–26995.CrossRef Novak, S., Lin, P., Li, C., Lumdee, C., Hu, J., Agarwal, A., Kik, P., Deng, W., & Richardson, K. (2017). Direct print of multilayer gradient refractive index chalcogenide glass coatings by electrospray. ACS Applied Materials & Interfaces, 9, 26990–26995.CrossRef
85.
go back to reference Richardson, K. A., Kang, M., Sisken, L., Yadav, A., Novak, S., Lepicard, A., Martin, I., Francois-Saint-Cyr, H., Schwarz, C. M., Mayer, T. S., Rivero-Baleine, C., Yee, A. J., & Mingareev, I. (2020). Optical Engineering, 59, 112602.CrossRef Richardson, K. A., Kang, M., Sisken, L., Yadav, A., Novak, S., Lepicard, A., Martin, I., Francois-Saint-Cyr, H., Schwarz, C. M., Mayer, T. S., Rivero-Baleine, C., Yee, A. J., & Mingareev, I. (2020). Optical Engineering, 59, 112602.CrossRef
86.
go back to reference Tatsumisago, M., & Hayashi, A. (2014). Chalcogenide glasses as electrolytes for batteries. In Chalcogenide glasses (pp. 632–654). Woodhead Publishing, Chapter 19. Tatsumisago, M., & Hayashi, A. (2014). Chalcogenide glasses as electrolytes for batteries. In Chalcogenide glasses (pp. 632–654). Woodhead Publishing, Chapter 19.
87.
go back to reference Shang, H., Zhang, M., Sun, D., Liu, Y.-G., Wang, Z., Liu, D., & Zeng, S. (2021). Optical investigation of chalcogenide glass for on-chip integrated devices. Results in Physics, 28, 104552.CrossRef Shang, H., Zhang, M., Sun, D., Liu, Y.-G., Wang, Z., Liu, D., & Zeng, S. (2021). Optical investigation of chalcogenide glass for on-chip integrated devices. Results in Physics, 28, 104552.CrossRef
88.
go back to reference Shang, H., Sun, D., Zhang, M., Song, J., Yang, Z., Liu, D., Zeng, S., Wan, L., Zhang, B., Wang, Z., Li, Z., & Liu, Y.-G. (2021). On-chip detector based on supercontinuum generation in chalcogenide waveguide. Journal of Lightwave Technology, 39, 3890–3895.CrossRef Shang, H., Sun, D., Zhang, M., Song, J., Yang, Z., Liu, D., Zeng, S., Wan, L., Zhang, B., Wang, Z., Li, Z., & Liu, Y.-G. (2021). On-chip detector based on supercontinuum generation in chalcogenide waveguide. Journal of Lightwave Technology, 39, 3890–3895.CrossRef
Metadata
Title
Advances in Chalcogenide Glasses (ChGs): Past, Present, and Future Applications
Author
Neeraj Mehta
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20266-7_5

Premium Partners