Skip to main content
Top
Published in: Journal of Visualization 4/2023

25-02-2023 | Regular Paper

Aerodynamic behavior and flow visualization on canonical NACA airfoils at low Reynolds number

Authors: Vibhav Durgesh, Hamid Johari, Elifalet Garcia

Published in: Journal of Visualization | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Some unmanned aerial vehicles, micro-air vehicles, and small-scale wind turbines operate at Reynolds number values less than \(5 \times 10^5\) based on chord length. However, there are limited data sets characterizing the airfoil performance at Reynolds number spanning \(2\times 10^4 \le Re_c \le 5\times 10^4\). The objective of this study is to investigate the impact of airfoil thickness and camber for canonical NACA airfoils at Reynolds numbers in this range and to correlate the observed aerodynamic behavior with the flow patterns. For this purpose, NACA-0009, 0012, 0021, and 6409 airfoils were used, and all experiments were performed in a water tunnel. A high-precision load cell was utilized to characterize the performance of the airfoils, and the hydrogen bubble flow visualization was used to assess the flow over the airfoils. The results showed that the airfoil thickness and camber significantly influence the aerodynamic performance and a strong dependence on the Reynolds number was observed. Symmetric NACA airfoils exhibited nonlinear lift behavior at Reynolds number below \(4\times 10^4\) as well as abrupt changes in lift values. The cambered airfoil showed some Reynolds number dependence but performed better than its symmetrical counterpart. The aerodynamic performance was correlated with the observed flow features around the airfoils.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alam MM, Zhou Y, Yang H, Guo H, Mi J (2010) The ultra-low Reynolds number airfoil wake. Exp Fluids 48(1):81–103CrossRef Alam MM, Zhou Y, Yang H, Guo H, Mi J (2010) The ultra-low Reynolds number airfoil wake. Exp Fluids 48(1):81–103CrossRef
go back to reference Anyoji M, Wakui S, Hamada D, Aono H (2018) Experimental study of owl-like airfoil aerodynamics at low Reynolds numbers. J Flow Control Meas Vis 6(03):185 Anyoji M, Wakui S, Hamada D, Aono H (2018) Experimental study of owl-like airfoil aerodynamics at low Reynolds numbers. J Flow Control Meas Vis 6(03):185
go back to reference Boutilier MSH (2011) Experimental investigation of transition over a NACA 0018 airfoil at a low Reynolds number. Master’s thesis Boutilier MSH (2011) Experimental investigation of transition over a NACA 0018 airfoil at a low Reynolds number. Master’s thesis
go back to reference Boutilier MS, Yarusevych S (2012) Separated shear layer transition over an airfoil at a low Reynolds number. Phys Fluids 24(8):084105CrossRef Boutilier MS, Yarusevych S (2012) Separated shear layer transition over an airfoil at a low Reynolds number. Phys Fluids 24(8):084105CrossRef
go back to reference Burgmann S, Schröder W (2008) Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp Fluids 45(4):675–691CrossRef Burgmann S, Schröder W (2008) Investigation of the vortex induced unsteadiness of a separation bubble via time-resolved and scanning PIV measurements. Exp Fluids 45(4):675–691CrossRef
go back to reference Burgmann S, Dannemann J, Schröder W (2008) Time-resolved and volumetric PIV measurements of a transitional separation bubble on an sd7003 airfoil. Exp Fluids 44(4):609–622CrossRef Burgmann S, Dannemann J, Schröder W (2008) Time-resolved and volumetric PIV measurements of a transitional separation bubble on an sd7003 airfoil. Exp Fluids 44(4):609–622CrossRef
go back to reference Carmichael B (1981) Low Reynolds number airfoil survey, vol. 1 (NASA-CR-165803) Carmichael B (1981) Low Reynolds number airfoil survey, vol. 1 (NASA-CR-165803)
go back to reference Chitta V, Walters DK, Dhakal TP (2012) Prediction of aerodynamic characteristics for elliptic airfoils in unmanned aerial vehicle applications. Prediction of Aerodynamic Characteristics for Elliptic Airfoils in Unmanned Aerial Vehicle Applications, New YorkCrossRef Chitta V, Walters DK, Dhakal TP (2012) Prediction of aerodynamic characteristics for elliptic airfoils in unmanned aerial vehicle applications. Prediction of Aerodynamic Characteristics for Elliptic Airfoils in Unmanned Aerial Vehicle Applications, New YorkCrossRef
go back to reference Choudhry A, Arjomandi M, Kelso R (2015) A study of long separation bubble on thick airfoils and its consequent effects. Int J Heat Fluid Flow 52:84–96CrossRef Choudhry A, Arjomandi M, Kelso R (2015) A study of long separation bubble on thick airfoils and its consequent effects. Int J Heat Fluid Flow 52:84–96CrossRef
go back to reference Fitzgerald EJ, Mueller TJ (1990) Measurements in a separation bubble on an airfoil using laser velocimetry. AIAA J 28(4):584–592CrossRef Fitzgerald EJ, Mueller TJ (1990) Measurements in a separation bubble on an airfoil using laser velocimetry. AIAA J 28(4):584–592CrossRef
go back to reference Gaster M (1969) The structure and behaviour of laminar separation bubbles. Citeseer, Princeton Gaster M (1969) The structure and behaviour of laminar separation bubbles. Citeseer, Princeton
go back to reference Genç MS, Karasu I, Açıkel HH (2012) An experimental study on aerodynamics of naca2415 aerofoil at low Re numbers. Exp Thermal Fluid Sci 39:252–264CrossRef Genç MS, Karasu I, Açıkel HH (2012) An experimental study on aerodynamics of naca2415 aerofoil at low Re numbers. Exp Thermal Fluid Sci 39:252–264CrossRef
go back to reference Jacobs EN (1932) The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel (No. NACA-TR-391) Jacobs EN (1932) The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel (No. NACA-TR-391)
go back to reference Laitone E (1997) Wind tunnel tests of wings at Reynolds numbers below 70 000. Exp Fluids 23(5):405–409CrossRef Laitone E (1997) Wind tunnel tests of wings at Reynolds numbers below 70 000. Exp Fluids 23(5):405–409CrossRef
go back to reference Lian Y, Shyy W (2007) Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA J 45(7):1501–1513CrossRef Lian Y, Shyy W (2007) Laminar-turbulent transition of a low Reynolds number rigid or flexible airfoil. AIAA J 45(7):1501–1513CrossRef
go back to reference Lin JM, Pauley LL (1996) Low-Reynolds-number separation on an airfoil. AIAA J 34(8):1570–1577CrossRefMATH Lin JM, Pauley LL (1996) Low-Reynolds-number separation on an airfoil. AIAA J 34(8):1570–1577CrossRefMATH
go back to reference Menon K, Mittal R (2020) Aerodynamic characteristics of canonical airfoils at low Reynolds numbers. AIAA J 58(2):977–980CrossRef Menon K, Mittal R (2020) Aerodynamic characteristics of canonical airfoils at low Reynolds numbers. AIAA J 58(2):977–980CrossRef
go back to reference Miley SJ (1982) Catalog of low-Reynolds-number airfoil data for wind-turbine applications. Tech. rep., Rockwell International Corp., Golden, CO (USA). Rocky Flats Plant Miley SJ (1982) Catalog of low-Reynolds-number airfoil data for wind-turbine applications. Tech. rep., Rockwell International Corp., Golden, CO (USA). Rocky Flats Plant
go back to reference Mueller TJ (1985) The influence of laminar separation and transition on low Reynolds number airfoil hysteresis. J Aircr 22(9):763–770CrossRef Mueller TJ (1985) The influence of laminar separation and transition on low Reynolds number airfoil hysteresis. J Aircr 22(9):763–770CrossRef
go back to reference Mueller TJ (2000) Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. Tech rep, Notre Dame Univ Dept Aerosp Mech Eng Mueller TJ (2000) Aerodynamic measurements at low Reynolds numbers for fixed wing micro-air vehicles. Tech rep, Notre Dame Univ Dept Aerosp Mech Eng
go back to reference O’Meara M, Mueller T (1987) Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J 25(8):1033–1041CrossRef O’Meara M, Mueller T (1987) Laminar separation bubble characteristics on an airfoil at low Reynolds numbers. AIAA J 25(8):1033–1041CrossRef
go back to reference Olson DA, Katz AW, Naguib AM, Koochesfahani MM, Rizzetta DP, Visbal MR (2013) On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number. Exp Fluids 54(2):1–11CrossRef Olson DA, Katz AW, Naguib AM, Koochesfahani MM, Rizzetta DP, Visbal MR (2013) On the challenges in experimental characterization of flow separation over airfoils at low Reynolds number. Exp Fluids 54(2):1–11CrossRef
go back to reference Ol MV, McAuliffe BR, Hanff ES, Scholz U, Kähler C (2005) Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. AIAA paper 5149(1):2005 Ol MV, McAuliffe BR, Hanff ES, Scholz U, Kähler C (2005) Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. AIAA paper 5149(1):2005
go back to reference Pope A, John JH (1966) Low-speed wind tunnel testing. Wiley, Hoboken Pope A, John JH (1966) Low-speed wind tunnel testing. Wiley, Hoboken
go back to reference Radespiel RE, Windte J, Scholz U (2007) Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J 45(6):1346–1356CrossRef Radespiel RE, Windte J, Scholz U (2007) Numerical and experimental flow analysis of moving airfoils with laminar separation bubbles. AIAA J 45(6):1346–1356CrossRef
go back to reference Ravi S, Watkins S, Watmuff J, Massey K, Peterson P, Marino M (2012) Influence of large-scale freestream turbulence on the performance of a thin airfoil. AIAA J 50(11):2448–2459CrossRef Ravi S, Watkins S, Watmuff J, Massey K, Peterson P, Marino M (2012) Influence of large-scale freestream turbulence on the performance of a thin airfoil. AIAA J 50(11):2448–2459CrossRef
go back to reference Selig MS (1995) Summary of Low-Speed Airfoil Data: Low-Speed Airfoil Test, University of Illinois at Urbana-Champaign. Virginia Beach, Va. SoarTech Selig MS (1995) Summary of Low-Speed Airfoil Data: Low-Speed Airfoil Test, University of Illinois at Urbana-Champaign. Virginia Beach, Va. SoarTech
go back to reference Seshagiri A, Cooper E, Traub LW (2009) Effects of vortex generators on an airfoil at low Reynolds numbers. J Aircr 46(1):116–122CrossRef Seshagiri A, Cooper E, Traub LW (2009) Effects of vortex generators on an airfoil at low Reynolds numbers. J Aircr 46(1):116–122CrossRef
go back to reference Smits AJ, Lim T (2012) Flow Visualization, Techniques and Examples. World Scientific, SingaporeCrossRef Smits AJ, Lim T (2012) Flow Visualization, Techniques and Examples. World Scientific, SingaporeCrossRef
go back to reference Spedding G, Hedenström A, McArthur J, Rosén M (2008) The implications of low-speed fixed-wing Aerofoil measurements on the analysis and performance of flapping bird wings. J Exp Biol 211(2):215–223CrossRef Spedding G, Hedenström A, McArthur J, Rosén M (2008) The implications of low-speed fixed-wing Aerofoil measurements on the analysis and performance of flapping bird wings. J Exp Biol 211(2):215–223CrossRef
go back to reference Tani I (1964) Low-speed flows involving bubble separations. Prog Aerosp Sci 5:70–103CrossRef Tani I (1964) Low-speed flows involving bubble separations. Prog Aerosp Sci 5:70–103CrossRef
go back to reference Tank J, Smith L, Spedding G (2017) On the possibility (or lack thereof) of agreement between experiment and computation of flows over wings at moderate Reynolds number. Interface focus 7(1):20160076CrossRef Tank J, Smith L, Spedding G (2017) On the possibility (or lack thereof) of agreement between experiment and computation of flows over wings at moderate Reynolds number. Interface focus 7(1):20160076CrossRef
go back to reference Traub LW, Coffman C (2019) Efficient low-reynolds-number airfoils. J Aircr 56(5):1987–2003CrossRef Traub LW, Coffman C (2019) Efficient low-reynolds-number airfoils. J Aircr 56(5):1987–2003CrossRef
go back to reference Wang S, Zhou Y, Alam MM, Yang H (2014) Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Phys Fluids 26(11):115107CrossRef Wang S, Zhou Y, Alam MM, Yang H (2014) Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Phys Fluids 26(11):115107CrossRef
go back to reference Xia T, Dong H, Yang L, Liu S, Jin Z (2021) Investigation on flow structure and aerodynamic characteristics over an airfoil at low Reynolds number-a review. AIP Adv 11(5):050701CrossRef Xia T, Dong H, Yang L, Liu S, Jin Z (2021) Investigation on flow structure and aerodynamic characteristics over an airfoil at low Reynolds number-a review. AIP Adv 11(5):050701CrossRef
go back to reference Yang Z, Haan F, Hu H, Ma H (2007) An experimental investigation on the flow separation on a low-Reynolds-number airfoil. In 45th AIAA aerospace sciences meeting and exhibit, p 275 Yang Z, Haan F, Hu H, Ma H (2007) An experimental investigation on the flow separation on a low-Reynolds-number airfoil. In 45th AIAA aerospace sciences meeting and exhibit, p 275
go back to reference Yarusevych S, Sullivan PE, Kawall JG (2009) On vortex shedding from an airfoil in low-Reynolds-number flows. J Fluid Mech 632:245–271CrossRefMATH Yarusevych S, Sullivan PE, Kawall JG (2009) On vortex shedding from an airfoil in low-Reynolds-number flows. J Fluid Mech 632:245–271CrossRefMATH
Metadata
Title
Aerodynamic behavior and flow visualization on canonical NACA airfoils at low Reynolds number
Authors
Vibhav Durgesh
Hamid Johari
Elifalet Garcia
Publication date
25-02-2023
Publisher
Springer Berlin Heidelberg
Published in
Journal of Visualization / Issue 4/2023
Print ISSN: 1343-8875
Electronic ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-023-00910-w

Other articles of this Issue 4/2023

Journal of Visualization 4/2023 Go to the issue

Premium Partner