Skip to main content
Top
Published in: Neural Computing and Applications 20/2020

07-03-2020 | S.I. : Applying Artificial Intelligence to the Internet of Things

AI for dynamic packet size optimization of batteryless IoT nodes: a case study for wireless body area sensor networks

Authors: Hamed Osouli Tabrizi, Fadi Al-Turjman

Published in: Neural Computing and Applications | Issue 20/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Packet size optimization, with the purpose of minimizing the wireless packet transmission energy consumption, is crucial for the energy efficiency of the Internet of Things nodes. Meanwhile, energy scavenging from ambient energy sources has gained a significant attraction to avoid battery issues as the number of nodes increasingly grows. Packet size optimization algorithms have so far been proposed for battery-powered networks that have limited total energy with continuous power availability to prolong their lifetime. On the other hand, batteryless networks based on energy harvesting offer unlimited total energy with the interruption in availability. This is due to changing ambient conditions or the required time for harvesting and storing in small capacitors. Packet size optimization of batteryless networks has not been addressed so far. In this paper, an AI-based packet size optimization algorithm is proposed for batteryless networks that consider the amount of harvested energy at each node. Therefore, packet size is optimized dynamically for each round of data transmission. The proposed method is then evaluated via numerical simulations for a heterogenous wireless body area sensor network as a case study, considering 1-hop, cooperative, and 2-hop communication networks. Cooperative topology yields optimum energy efficiency for highly dynamic sensors, such as ECG, while 2-hop has shown to be optimum for the same type of sensors in battery-powered networks. Also, for sensors with slower dynamics such as body temperature, 1-hop turns out to be optimum in networks solely dependent on energy scavenging while cooperative topology is optimum for battery-powered networks. The algorithm applies to any heterogeneous fully batteryless networks to dynamically optimize packet size at each transmission instance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wu F, Redoute JM, Yuce MR (2018) WE-safe: a self-powered wearable IoT sensor network for safety applications based on lora. IEEE Access 6:40846–40853CrossRef Wu F, Redoute JM, Yuce MR (2018) WE-safe: a self-powered wearable IoT sensor network for safety applications based on lora. IEEE Access 6:40846–40853CrossRef
2.
go back to reference Buxi D et al (2018) Systolic time interval estimation using continuous wave radar with on-body antennas. IEEE J Biomed Heal Informatics 22(1):129–139CrossRef Buxi D et al (2018) Systolic time interval estimation using continuous wave radar with on-body antennas. IEEE J Biomed Heal Informatics 22(1):129–139CrossRef
3.
go back to reference Wu T, Redouté JM, Yuce MR (2018) A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT healthcare applications. IEEE Access 6:35801–35808CrossRef Wu T, Redouté JM, Yuce MR (2018) A wireless implantable sensor design with subcutaneous energy harvesting for long-term IoT healthcare applications. IEEE Access 6:35801–35808CrossRef
4.
go back to reference Wu T, Wu F, Redoute JM, Yuce MR (2017) An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 5:11413–11422CrossRef Wu T, Wu F, Redoute JM, Yuce MR (2017) An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access 5:11413–11422CrossRef
5.
go back to reference Demir SM, Al-Turjman F, Muhtaroglu A (2018) Energy scavenging methods for WBAN applications: a review. IEEE Sens J 18(16):6477–6488CrossRef Demir SM, Al-Turjman F, Muhtaroglu A (2018) Energy scavenging methods for WBAN applications: a review. IEEE Sens J 18(16):6477–6488CrossRef
6.
go back to reference Zhang R, Nayak A, Yu J (2019) Sleep scheduling in energy harvesting wireless body area networks. IEEE Commun Mag 57(2):95–101CrossRef Zhang R, Nayak A, Yu J (2019) Sleep scheduling in energy harvesting wireless body area networks. IEEE Commun Mag 57(2):95–101CrossRef
7.
go back to reference Akhtar F, Rehmani MH (2017) Energy harvesting for self-sustainable wireless body area networks. IT Prof 19(2):32–40CrossRef Akhtar F, Rehmani MH (2017) Energy harvesting for self-sustainable wireless body area networks. IT Prof 19(2):32–40CrossRef
8.
go back to reference Hamid R, Yuce MR (2017) A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sensors Actuators A Phys. 257:198–207CrossRef Hamid R, Yuce MR (2017) A wearable energy harvester unit using piezoelectric–electromagnetic hybrid technique. Sensors Actuators A Phys. 257:198–207CrossRef
9.
go back to reference Pandey B, Jain A, Azeem MF (2017) Self-sustaining WBAN implants for biomedical applications. In: Proceedings of 2016 2nd international conference on applied and theoretical computing and communication technology iCATccT 2016, pp 494–503 Pandey B, Jain A, Azeem MF (2017) Self-sustaining WBAN implants for biomedical applications. In: Proceedings of 2016 2nd international conference on applied and theoretical computing and communication technology iCATccT 2016, pp 494–503
10.
go back to reference Kappel R, Pachler W, Auer M, Pribyl W, Hofer G, Holweg G (2013) Using thermoelectric energy harvesting to power a self-sustaining temperature sensor in body area networks. In: Proceedings of the IEEE international conference on industrial technology, pp 787–792 Kappel R, Pachler W, Auer M, Pribyl W, Hofer G, Holweg G (2013) Using thermoelectric energy harvesting to power a self-sustaining temperature sensor in body area networks. In: Proceedings of the IEEE international conference on industrial technology, pp 787–792
11.
go back to reference Promwongsa N, Sanguankotchakorn T (2016) “Packet size optimization for energy-efficient 2-hop in multipath fading for WBAN. In: Proceedings of Asia-Pacific conference on communications APCC 2016, pp 445–450 Promwongsa N, Sanguankotchakorn T (2016) “Packet size optimization for energy-efficient 2-hop in multipath fading for WBAN. In: Proceedings of Asia-Pacific conference on communications APCC 2016, pp 445–450
12.
go back to reference Deepak KS, Babu AV (2012) Packet size optimization for energy efficient cooperative wireless body area networks. In: 2012 annual IEEE India conference. INDICON 2012, pp 736–741 Deepak KS, Babu AV (2012) Packet size optimization for energy efficient cooperative wireless body area networks. In: 2012 annual IEEE India conference. INDICON 2012, pp 736–741
13.
go back to reference Domingo MC (2011) Packet size optimization for improving the energy efficiency in body sensor networks. ETRI J 33(3):299–309CrossRef Domingo MC (2011) Packet size optimization for improving the energy efficiency in body sensor networks. ETRI J 33(3):299–309CrossRef
14.
go back to reference Jacob L, Member S (2018) Energy efficient and reliable communication in IEEE 802.15.6 Ir-Uwb. In: 2018 international conference on advances in computing, communications and informatics (ICACCI), pp 2352–2358 Jacob L, Member S (2018) Energy efficient and reliable communication in IEEE 802.15.6 Ir-Uwb. In: 2018 international conference on advances in computing, communications and informatics (ICACCI), pp 2352–2358
15.
go back to reference Zang W, Miao F, Gravina R, Sun F, Fortino G, Li Y (2019) CMDP-based intelligent transmission for wireless body area network in remote health monitoring. Neural Comput Appl 32:829–837CrossRef Zang W, Miao F, Gravina R, Sun F, Fortino G, Li Y (2019) CMDP-based intelligent transmission for wireless body area network in remote health monitoring. Neural Comput Appl 32:829–837CrossRef
16.
go back to reference Bai T et al (2019) An optimized protocol for QoS and energy efficiency on wireless body area networks. Peer-to-Peer Netw Appl 12(2):326–336CrossRef Bai T et al (2019) An optimized protocol for QoS and energy efficiency on wireless body area networks. Peer-to-Peer Netw Appl 12(2):326–336CrossRef
17.
go back to reference Takizawa K et al (2008) Channel models for wireless body area networks. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society, EMBS’08—personalized healthcare through technology, pp 1549–1552 Takizawa K et al (2008) Channel models for wireless body area networks. In: Proceedings of the 30th annual international conference of the IEEE engineering in medicine and biology society, EMBS’08personalized healthcare through technology, pp 1549–1552
18.
go back to reference Ju M, Kim IM (2010) Error performance analysis of BPSK modulation in physical-layer network-coded bidirectional relay networks. IEEE Trans Commun 58(10):2770–2775CrossRef Ju M, Kim IM (2010) Error performance analysis of BPSK modulation in physical-layer network-coded bidirectional relay networks. IEEE Trans Commun 58(10):2770–2775CrossRef
19.
go back to reference IEEE (2018) IEEE draft standard for safety levels with respect to human exposure to electric, magnetic and electromagnetic fields, 0 Hz to 300 GHz. In: IEEE PC95.1/D3.4, pp 1–315 IEEE (2018) IEEE draft standard for safety levels with respect to human exposure to electric, magnetic and electromagnetic fields, 0 Hz to 300 GHz. In: IEEE PC95.1/D3.4, pp 1–315
20.
go back to reference Krieger UR, Kumar BK (2018) Modeling the performance of ARQ error control in an LTE transmission system. In: German R, Hielscher KS, Krieger U (eds) Measurement, modelling and evaluation of computing systems, MMB 2018. Lecture Notes in Computer Science, vol 10740. Springer, Cham Krieger UR, Kumar BK (2018) Modeling the performance of ARQ error control in an LTE transmission system. In: German R, Hielscher KS, Krieger U (eds) Measurement, modelling and evaluation of computing systems, MMB 2018. Lecture Notes in Computer Science, vol 10740. Springer, Cham
21.
go back to reference Osouli Tabrizi H, Jayaweera HMPC, Muhtaroglu A (2019) Fully integrated autonomous interface with maximum power point tracking for energy harvesting TEGs with high power capacity. IEEE Trans Power Electron 8993(c):1 Osouli Tabrizi H, Jayaweera HMPC, Muhtaroglu A (2019) Fully integrated autonomous interface with maximum power point tracking for energy harvesting TEGs with high power capacity. IEEE Trans Power Electron 8993(c):1
Metadata
Title
AI for dynamic packet size optimization of batteryless IoT nodes: a case study for wireless body area sensor networks
Authors
Hamed Osouli Tabrizi
Fadi Al-Turjman
Publication date
07-03-2020
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 20/2020
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-04813-x

Other articles of this Issue 20/2020

Neural Computing and Applications 20/2020 Go to the issue

S.I. : Applying Artificial Intelligence to the Internet of Things

A hybrid classifier combination for home automation using EEG signals

Premium Partner