Skip to main content
Top

2018 | OriginalPaper | Chapter

9. All-Silicon Optical Technology for Contactless Testing of Integrated Circuits

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The uniqueness of the “all-silicon optical testing methodology” lies in the fact that it is fully an optical technique utilizing visible light, and it is completely compatible with standard silicon IC processing. It uses optical signals transmitted to the circuit for “inputting” the stimulus data and also uses optical signals from the circuit for observation of the logic output. In addition, this approach is fully compatible with the simultaneous use of mechanical probes for power and other signals. The approach avoids many of the limitations of other contactless techniques.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. Sayil, D.V. Kerns, S.E. Kerns, Comparison of contactless measurement and testing techniques to a new all-silicon optical test and characterization method. IEEE Trans. Instrum. Meas. 54(5), 2082–2089 (2005)CrossRef S. Sayil, D.V. Kerns, S.E. Kerns, Comparison of contactless measurement and testing techniques to a new all-silicon optical test and characterization method. IEEE Trans. Instrum. Meas. 54(5), 2082–2089 (2005)CrossRef
2.
go back to reference S. Sayil, “Optical Contactless Probing: An all-silicon, fully optical approach”- Special feature article. IEEE Des. Test Comput. 23(2), 138–146 (2006)CrossRef S. Sayil, “Optical Contactless Probing: An all-silicon, fully optical approach”- Special feature article. IEEE Des. Test Comput. 23(2), 138–146 (2006)CrossRef
3.
go back to reference R. Newman, Visible light from a silicon p-n junction. Phys. Rev. 100(2), 700–703 (1955)CrossRef R. Newman, Visible light from a silicon p-n junction. Phys. Rev. 100(2), 700–703 (1955)CrossRef
4.
go back to reference D. Jiang, B.L. Bhuva, S.E. Kerns, D. V. Kerns, Comparative analysis of metal and optical interconnect technology, in Proceedings of IEEE International Interconnect Technology Conference, 2000, pp. 25–27 D. Jiang, B.L. Bhuva, S.E. Kerns, D. V. Kerns, Comparative analysis of metal and optical interconnect technology, in Proceedings of IEEE International Interconnect Technology Conference, 2000, pp. 25–27
5.
go back to reference A.T. Fiory, N.M. Ravindra, Light emission from silicon: some perspectives and applications. J. Electron. Mater. 32(10), 1043–1051 (2003)CrossRef A.T. Fiory, N.M. Ravindra, Light emission from silicon: some perspectives and applications. J. Electron. Mater. 32(10), 1043–1051 (2003)CrossRef
6.
go back to reference L.T. Canham, Silicon quantum wire array fabrication by electro-chemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef L.T. Canham, Silicon quantum wire array fabrication by electro-chemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046–1048 (1990)CrossRef
7.
go back to reference F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P.G. Fallica, Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices. Appl. Phys. Lett. 81, 3242–3244 (2002)CrossRef F. Iacona, D. Pacifici, A. Irrera, M. Miritello, G. Franzò, F. Priolo, D. Sanfilippo, G. Di Stefano, P.G. Fallica, Electroluminescence at 1.54 μm in Er-doped Si nanocluster-based devices. Appl. Phys. Lett. 81, 3242–3244 (2002)CrossRef
8.
go back to reference M.E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, C. Buongiorno, Si-based materials and devices for light emission in silicon. Phys. E. 16, 547–553 (2003)CrossRef M.E. Castagna, S. Coffa, M. Monaco, L. Caristia, A. Messina, R. Mangano, C. Buongiorno, Si-based materials and devices for light emission in silicon. Phys. E. 16, 547–553 (2003)CrossRef
9.
go back to reference A. Nazarov, J.M. Sun, W. Skorupa, R.A. Yankov, I.N. Osiyuk, I.P. Tjagulskii, V.S. Lysenko, T. Gebel, Light emission and charge Trapping in Er-doped silicon dioxide films containing silicon nanocrystals. Appl. Phys. Lett. 86, 151914 (2005)CrossRef A. Nazarov, J.M. Sun, W. Skorupa, R.A. Yankov, I.N. Osiyuk, I.P. Tjagulskii, V.S. Lysenko, T. Gebel, Light emission and charge Trapping in Er-doped silicon dioxide films containing silicon nanocrystals. Appl. Phys. Lett. 86, 151914 (2005)CrossRef
10.
go back to reference N. Akil, S.E. Kerns, D.V. Kerns, A. Hoffmann, J.-P. Charles, A multimechanism model for photon generation by silicon junctions in avalanche breakdown. IEEE Trans. Electron Devices 46(5), 1022–1028 (1999)CrossRef N. Akil, S.E. Kerns, D.V. Kerns, A. Hoffmann, J.-P. Charles, A multimechanism model for photon generation by silicon junctions in avalanche breakdown. IEEE Trans. Electron Devices 46(5), 1022–1028 (1999)CrossRef
11.
go back to reference A. Chatterjee, B. Bhuva, Accelerated stressing and degradation mechanisms for Si-based photoemitters. IEEE Trans. Device Mater. Reliab. 2(3) (2002) A. Chatterjee, B. Bhuva, Accelerated stressing and degradation mechanisms for Si-based photoemitters. IEEE Trans. Device Mater. Reliab. 2(3) (2002)
12.
go back to reference A. Chatterjee, B. Bhuva, R. Schrimpf, High-speed light modulation in avalanche breakdown mode for Si diodes. IEEE Electron Device Letters 25(9) (2004) A. Chatterjee, B. Bhuva, R. Schrimpf, High-speed light modulation in avalanche breakdown mode for Si diodes. IEEE Electron Device Letters 25(9) (2004)
13.
go back to reference S. Sayil, Avalanche breakdown in silicon devices for contactless logic testing and optical interconnect. Analog Integr. Circ. Sig. Process 56(3), 213–221 (2008)CrossRef S. Sayil, Avalanche breakdown in silicon devices for contactless logic testing and optical interconnect. Analog Integr. Circ. Sig. Process 56(3), 213–221 (2008)CrossRef
14.
go back to reference J.C. Tsang, J.A. Kash, D.P. Vallett, Picosecond imaging circuit analysis. IBM J. Res. Dev. 44(4), 583–603 (2000)CrossRef J.C. Tsang, J.A. Kash, D.P. Vallett, Picosecond imaging circuit analysis. IBM J. Res. Dev. 44(4), 583–603 (2000)CrossRef
Metadata
Title
All-Silicon Optical Technology for Contactless Testing of Integrated Circuits
Author
Selahattin Sayil
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-69673-7_9