Skip to main content
Top
Published in: Physics of Metals and Metallography 8/2021

01-08-2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Aluminum Matrix Composites Reinforced with Cu9Al4 Particles: Mechanochemical Synthesis and Consolidation by the Spark Plasma Sintering

Authors: T. F. Grigoreva, D. V. Dudina, S. A. Petrova, S. A. Kovaleva, I. S. Batraev, S. V. Vosmerikov, E. T. Devyatkina, N. Z. Lyakhov

Published in: Physics of Metals and Metallography | Issue 8/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

X-ray analysis and scanning electron microscopy have been used to study mechanochemically synthesized Al/10 wt % Cu9Al4 and Al/20 wt % Cu9Al4 composites and sintered materials based on them. As a modifiers, powders of the mechanosynthesized nanostructured Cu9Al4 intermetallic compound were used. It has been shown that the composite structure with the uniform distribution of the Cu9Al4 particles in the aluminum matrix is formed during mechanical activation even for 1 min. In the course of mechanical activation of the powder mixtures of Al with 10 and 20 wt % Cu9Al4 the size of intermetallic crystallites grows by 2.3–3 times to 7 and 9 nm, respectively. After spark plasma sintering of the Al/Сu9Al4 composites, the uniform distribution of reinforcing particles retains for their content up to 20 wt %. The hardness of sintered composites is 60–77 HV, which is ~2 times higher than the hardness of aluminum without additives of the strengthening phase.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. I. Marukovich, V. A. Kukareko, V. Yu. Stetsenko, V. Chekulaev, and P. G. Sukhotskii, “Investigation of tribotechnical properties of the AK15M3 foundry silumin,” Lit’e Metall., No. 1 (90), 7–11 (2018). E. I. Marukovich, V. A. Kukareko, V. Yu. Stetsenko, V. Chekulaev, and P. G. Sukhotskii, “Investigation of tribotechnical properties of the AK15M3 foundry silumin,” Lit’e Metall., No. 1 (90), 7–11 (2018).
2.
go back to reference A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Development prospects,” Lit’e Metall., No. 4 (81), 38–45 (2015). A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Development prospects,” Lit’e Metall., No. 4 (81), 38–45 (2015).
3.
go back to reference G. S. Luk’yanov and V. M. Nikitin, “Fine crystalline aluminum ligatures,” Liteinoe Proizvod., Nos. 8–9, 13–14 (1997). G. S. Luk’yanov and V. M. Nikitin, “Fine crystalline aluminum ligatures,” Liteinoe Proizvod., Nos. 8–9, 13–14 (1997).
4.
go back to reference D. V. Dudina, B. B. Bokhonov, I. S. Batraev, Y. N. Amirastanov, A. V. Ukhina, I. D. Kuchumova, M. A. Legan, A. N. Novoselov, K. B. Gerasimov, I. A. Bataev, K. Georgarakis, G. Y. Koga, Y. Guo, W. J. Botta, and A. M. Jorge Jr., “Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering,” Mater. Sci. Eng., A 799, 140165 (2021).CrossRef D. V. Dudina, B. B. Bokhonov, I. S. Batraev, Y. N. Amirastanov, A. V. Ukhina, I. D. Kuchumova, M. A. Legan, A. N. Novoselov, K. B. Gerasimov, I. A. Bataev, K. Georgarakis, G. Y. Koga, Y. Guo, W. J. Botta, and A. M. Jorge Jr., “Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering,” Mater. Sci. Eng., A 799, 140165 (2021).CrossRef
5.
go back to reference Z. Wang, K. Georgarakis, K. S. Nakayama, Y. Li, A. A. Tsarkov, G. Xie, D. Dudina, D. V. Louzguine-Luzgin, and A. R. Yavari, “Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites,” Sci. Rep. 6, 24384 (2016).CrossRef Z. Wang, K. Georgarakis, K. S. Nakayama, Y. Li, A. A. Tsarkov, G. Xie, D. Dudina, D. V. Louzguine-Luzgin, and A. R. Yavari, “Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites,” Sci. Rep. 6, 24384 (2016).CrossRef
6.
go back to reference M. Penchal Reddy, V. Manakari, G. Parande, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Structural, mechanical and thermal characteristics of Al–Cu–Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion,” Composites, Part B 164, 485–492 (2019).CrossRef M. Penchal Reddy, V. Manakari, G. Parande, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Structural, mechanical and thermal characteristics of Al–Cu–Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion,” Composites, Part B 164, 485–492 (2019).CrossRef
7.
go back to reference S. Nawathe, W. L. E. Wong, and M. Gupta, “Using microwaves to synthesize pure aluminum and metastable Al/Cu nanocomposites with superior properties,” J. Mater. Proc. Technol. 209, 4890–4895 (2009).CrossRef S. Nawathe, W. L. E. Wong, and M. Gupta, “Using microwaves to synthesize pure aluminum and metastable Al/Cu nanocomposites with superior properties,” J. Mater. Proc. Technol. 209, 4890–4895 (2009).CrossRef
8.
go back to reference Z. Wang, S. Scudino, M. Stoica, W. Zhang, and J. Eckert, “Al-based matrix composites reinforced with short Fe-based metallic glassy fiber,” J. Alloys Compd. 651, 170–175 (2015).CrossRef Z. Wang, S. Scudino, M. Stoica, W. Zhang, and J. Eckert, “Al-based matrix composites reinforced with short Fe-based metallic glassy fiber,” J. Alloys Compd. 651, 170–175 (2015).CrossRef
9.
go back to reference H. Zhang, P. Feng, and F. Akhtar, “Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism,” Sci. Rep. 7, 12391 (2017).CrossRef H. Zhang, P. Feng, and F. Akhtar, “Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism,” Sci. Rep. 7, 12391 (2017).CrossRef
10.
go back to reference L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2850 (1991). L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2850 (1991).
11.
go back to reference K. S. Mohammed, H. T. Naeem, and S. N. Iskak, “Study of the feasibility of producing Al–Ni intermetallic compounds by mechanical alloying,” Phys. Met. Metallogr. 117, 795–804 (2016).CrossRef K. S. Mohammed, H. T. Naeem, and S. N. Iskak, “Study of the feasibility of producing Al–Ni intermetallic compounds by mechanical alloying,” Phys. Met. Metallogr. 117, 795–804 (2016).CrossRef
12.
go back to reference R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 88–90, 595–602 (1992).CrossRef R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 8890, 595–602 (1992).CrossRef
13.
go back to reference L. D’Angelo, J. Ochoa, and G. González, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 20–21, 231–236 (2004).CrossRef L. D’Angelo, J. Ochoa, and G. González, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 20–21, 231–236 (2004).CrossRef
14.
go back to reference I. G. Brodova, A. Yu. Volkov, I. G. Shirinkina, A. A. Kalonov, T. I. Yablonskikh, V. V. Astaf’ev, and L. V. Elokhina, “Evolution of the structure and properties of Al/Cu/Mg ternary composites during thermomechanical treatment,” Phys. Met. Metallogr. 119, 1210–1216 (2018).CrossRef I. G. Brodova, A. Yu. Volkov, I. G. Shirinkina, A. A. Kalonov, T. I. Yablonskikh, V. V. Astaf’ev, and L. V. Elokhina, “Evolution of the structure and properties of Al/Cu/Mg ternary composites during thermomechanical treatment,” Phys. Met. Metallogr. 119, 1210–1216 (2018).CrossRef
15.
go back to reference E. P. Elsukov, A. L. Ul’yanov, V. E. Porsev, D. A. Kolodkin, A. V. Zagainov, and O. M. Nemtsova, “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys,” Phys. Met. Metallogr. 119, 153–160 (2018).CrossRef E. P. Elsukov, A. L. Ul’yanov, V. E. Porsev, D. A. Kolodkin, A. V. Zagainov, and O. M. Nemtsova, “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys,” Phys. Met. Metallogr. 119, 153–160 (2018).CrossRef
16.
go back to reference E. V. Voronina, A. K. Al’Saedi, A. G. Ivanova, A. K. Arzhnikov, and E. N. Dulov, “Structural and phase transformations occurring during preparation of ordered ternary Fe–Al–M alloys (with M = Ga, B, V, and Mn) by mechanical alloying,” Phys. Met. Metallogr. 120, 1213–1220 (2019).CrossRef E. V. Voronina, A. K. Al’Saedi, A. G. Ivanova, A. K. Arzhnikov, and E. N. Dulov, “Structural and phase transformations occurring during preparation of ordered ternary Fe–Al–M alloys (with M = Ga, B, V, and Mn) by mechanical alloying,” Phys. Met. Metallogr. 120, 1213–1220 (2019).CrossRef
17.
go back to reference H. Bakker, “Miedema’s semi-empirical model for estimating enthalpies in alloys,” Mater. Sci. Briefings 1, 1–80 (1988). H. Bakker, “Miedema’s semi-empirical model for estimating enthalpies in alloys,” Mater. Sci. Briefings 1, 1–80 (1988).
18.
go back to reference T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz, and N. Z. Lyakhov, “Copper–tin materials for tribotechnical purposes,” Inorg. Mater.: Appl. Res. 11, 744–749 (2020).CrossRef T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz, and N. Z. Lyakhov, “Copper–tin materials for tribotechnical purposes,” Inorg. Mater.: Appl. Res. 11, 744–749 (2020).CrossRef
19.
go back to reference S. A. Kovaleva, P. A. Vityaz’, and T. F. Grigoreva, “Mechanochemical approach to increasing the microhardness of metallic tribological materials,” in Actual Problems of Strength, Ed. by V. V. Rubanik (Tipogr. Pobeda, Molodechno, 2020), Ch. 16, pp. 178–189. S. A. Kovaleva, P. A. Vityaz’, and T. F. Grigoreva, “Mechanochemical approach to increasing the microhardness of metallic tribological materials,” in Actual Problems of Strength, Ed. by V. V. Rubanik (Tipogr. Pobeda, Molodechno, 2020), Ch. 16, pp. 178–189.
20.
go back to reference T. F. Grigoreva, S. A. Petrova, S. A. Kovaleva, D. V. Dudina, I. S. Batraev, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, E. T. Devyatkina, T. A. Udalova, S. N. Polyakov, and N. Z. Lyakhov, “Mechanochemical synthesis of Cu–Al alloyed powders and their consolidation by spark plasma sintering,” Phys. Met. Metallogr. 122, 681–687 (2021).CrossRef T. F. Grigoreva, S. A. Petrova, S. A. Kovaleva, D. V. Dudina, I. S. Batraev, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, E. T. Devyatkina, T. A. Udalova, S. N. Polyakov, and N. Z. Lyakhov, “Mechanochemical synthesis of Cu–Al alloyed powders and their consolidation by spark plasma sintering,” Phys. Met. Metallogr. 122, 681–687 (2021).CrossRef
21.
go back to reference E. G. Avvakumov, Mechanical Activation of Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian]. E. G. Avvakumov, Mechanical Activation of Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian].
22.
go back to reference DIFFRAC plus :EVA (Bruker AXS, Karlsruhe, 2008). DIFFRAC plus :EVA (Bruker AXS, Karlsruhe, 2008).
23.
go back to reference Powder Diffraction File PDF4+, Release 2020 (International Centre for Diffraction Data, Newtown Square, PA, 2020) Powder Diffraction File PDF4+, Release 2020 (International Centre for Diffraction Data, Newtown Square, PA, 2020)
24.
go back to reference J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-Ray Experiments, ENSP (Laboratoire des Matériaux et du Génie Physique, Grenoble, 2003). J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-Ray Experiments, ENSP (Laboratoire des Matériaux et du Génie Physique, Grenoble, 2003).
25.
go back to reference H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).CrossRef H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).CrossRef
26.
go back to reference DIFFRAC plus :TOPAS (Bruker AXS, Karlsruhe, 2006). DIFFRAC plus :TOPAS (Bruker AXS, Karlsruhe, 2006).
27.
go back to reference Phase Diagrams of Binary Metallic Systems: Handbook, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1. Phase Diagrams of Binary Metallic Systems: Handbook, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1.
28.
go back to reference R. A. Andrievskii and A. M. Glezer, “Size effect in nanocrystalline materials: II. Mechanical and physical properties, Phys. Met. Metallogr. 89, 83–102 (2000). R. A. Andrievskii and A. M. Glezer, “Size effect in nanocrystalline materials: II. Mechanical and physical properties, Phys. Met. Metallogr. 89, 83–102 (2000).
29.
go back to reference T. V. Ostanina, A. I. Shveikin, and P. V. Trusov, “The grain structure refinement of metals and alloys under severe plastic deformation: experimental data and analysis of mechanisms,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., No. 2, 85–111 (2020). T. V. Ostanina, A. I. Shveikin, and P. V. Trusov, “The grain structure refinement of metals and alloys under severe plastic deformation: experimental data and analysis of mechanisms,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., No. 2, 85–111 (2020).
30.
go back to reference I. A. Ovid’ko, “Theories of grain growth and methods of its suppression in nanocrystalline and polycrystalline materials,” Mater. Phys. Mech. 8 (2), 174–198 (2009). I. A. Ovid’ko, “Theories of grain growth and methods of its suppression in nanocrystalline and polycrystalline materials,” Mater. Phys. Mech. 8 (2), 174–198 (2009).
Metadata
Title
Aluminum Matrix Composites Reinforced with Cu9Al4 Particles: Mechanochemical Synthesis and Consolidation by the Spark Plasma Sintering
Authors
T. F. Grigoreva
D. V. Dudina
S. A. Petrova
S. A. Kovaleva
I. S. Batraev
S. V. Vosmerikov
E. T. Devyatkina
N. Z. Lyakhov
Publication date
01-08-2021
Publisher
Pleiades Publishing
Published in
Physics of Metals and Metallography / Issue 8/2021
Print ISSN: 0031-918X
Electronic ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2108007X

Other articles of this Issue 8/2021

Physics of Metals and Metallography 8/2021 Go to the issue