Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2021

01.08.2021 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Aluminum Matrix Composites Reinforced with Cu9Al4 Particles: Mechanochemical Synthesis and Consolidation by the Spark Plasma Sintering

verfasst von: T. F. Grigoreva, D. V. Dudina, S. A. Petrova, S. A. Kovaleva, I. S. Batraev, S. V. Vosmerikov, E. T. Devyatkina, N. Z. Lyakhov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

X-ray analysis and scanning electron microscopy have been used to study mechanochemically synthesized Al/10 wt % Cu9Al4 and Al/20 wt % Cu9Al4 composites and sintered materials based on them. As a modifiers, powders of the mechanosynthesized nanostructured Cu9Al4 intermetallic compound were used. It has been shown that the composite structure with the uniform distribution of the Cu9Al4 particles in the aluminum matrix is formed during mechanical activation even for 1 min. In the course of mechanical activation of the powder mixtures of Al with 10 and 20 wt % Cu9Al4 the size of intermetallic crystallites grows by 2.3–3 times to 7 and 9 nm, respectively. After spark plasma sintering of the Al/Сu9Al4 composites, the uniform distribution of reinforcing particles retains for their content up to 20 wt %. The hardness of sintered composites is 60–77 HV, which is ~2 times higher than the hardness of aluminum without additives of the strengthening phase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. I. Marukovich, V. A. Kukareko, V. Yu. Stetsenko, V. Chekulaev, and P. G. Sukhotskii, “Investigation of tribotechnical properties of the AK15M3 foundry silumin,” Lit’e Metall., No. 1 (90), 7–11 (2018). E. I. Marukovich, V. A. Kukareko, V. Yu. Stetsenko, V. Chekulaev, and P. G. Sukhotskii, “Investigation of tribotechnical properties of the AK15M3 foundry silumin,” Lit’e Metall., No. 1 (90), 7–11 (2018).
2.
Zurück zum Zitat A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Development prospects,” Lit’e Metall., No. 4 (81), 38–45 (2015). A. T. Volochko, “Modification of eutectic and primary silicon particles in silumins. Development prospects,” Lit’e Metall., No. 4 (81), 38–45 (2015).
3.
Zurück zum Zitat G. S. Luk’yanov and V. M. Nikitin, “Fine crystalline aluminum ligatures,” Liteinoe Proizvod., Nos. 8–9, 13–14 (1997). G. S. Luk’yanov and V. M. Nikitin, “Fine crystalline aluminum ligatures,” Liteinoe Proizvod., Nos. 8–9, 13–14 (1997).
4.
Zurück zum Zitat D. V. Dudina, B. B. Bokhonov, I. S. Batraev, Y. N. Amirastanov, A. V. Ukhina, I. D. Kuchumova, M. A. Legan, A. N. Novoselov, K. B. Gerasimov, I. A. Bataev, K. Georgarakis, G. Y. Koga, Y. Guo, W. J. Botta, and A. M. Jorge Jr., “Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering,” Mater. Sci. Eng., A 799, 140165 (2021).CrossRef D. V. Dudina, B. B. Bokhonov, I. S. Batraev, Y. N. Amirastanov, A. V. Ukhina, I. D. Kuchumova, M. A. Legan, A. N. Novoselov, K. B. Gerasimov, I. A. Bataev, K. Georgarakis, G. Y. Koga, Y. Guo, W. J. Botta, and A. M. Jorge Jr., “Interaction between Fe66Cr10Nb5B19 metallic glass and aluminum during spark plasma sintering,” Mater. Sci. Eng., A 799, 140165 (2021).CrossRef
5.
Zurück zum Zitat Z. Wang, K. Georgarakis, K. S. Nakayama, Y. Li, A. A. Tsarkov, G. Xie, D. Dudina, D. V. Louzguine-Luzgin, and A. R. Yavari, “Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites,” Sci. Rep. 6, 24384 (2016).CrossRef Z. Wang, K. Georgarakis, K. S. Nakayama, Y. Li, A. A. Tsarkov, G. Xie, D. Dudina, D. V. Louzguine-Luzgin, and A. R. Yavari, “Microstructure and mechanical behavior of metallic glass fiber-reinforced Al alloy matrix composites,” Sci. Rep. 6, 24384 (2016).CrossRef
6.
Zurück zum Zitat M. Penchal Reddy, V. Manakari, G. Parande, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Structural, mechanical and thermal characteristics of Al–Cu–Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion,” Composites, Part B 164, 485–492 (2019).CrossRef M. Penchal Reddy, V. Manakari, G. Parande, R. A. Shakoor, A. M. A. Mohamed, and M. Gupta, “Structural, mechanical and thermal characteristics of Al–Cu–Li particle reinforced Al-matrix composites synthesized by microwave sintering and hot extrusion,” Composites, Part B 164, 485–492 (2019).CrossRef
7.
Zurück zum Zitat S. Nawathe, W. L. E. Wong, and M. Gupta, “Using microwaves to synthesize pure aluminum and metastable Al/Cu nanocomposites with superior properties,” J. Mater. Proc. Technol. 209, 4890–4895 (2009).CrossRef S. Nawathe, W. L. E. Wong, and M. Gupta, “Using microwaves to synthesize pure aluminum and metastable Al/Cu nanocomposites with superior properties,” J. Mater. Proc. Technol. 209, 4890–4895 (2009).CrossRef
8.
Zurück zum Zitat Z. Wang, S. Scudino, M. Stoica, W. Zhang, and J. Eckert, “Al-based matrix composites reinforced with short Fe-based metallic glassy fiber,” J. Alloys Compd. 651, 170–175 (2015).CrossRef Z. Wang, S. Scudino, M. Stoica, W. Zhang, and J. Eckert, “Al-based matrix composites reinforced with short Fe-based metallic glassy fiber,” J. Alloys Compd. 651, 170–175 (2015).CrossRef
9.
Zurück zum Zitat H. Zhang, P. Feng, and F. Akhtar, “Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism,” Sci. Rep. 7, 12391 (2017).CrossRef H. Zhang, P. Feng, and F. Akhtar, “Aluminium matrix tungsten aluminide and tungsten reinforced composites by solid-state diffusion mechanism,” Sci. Rep. 7, 12391 (2017).CrossRef
10.
Zurück zum Zitat L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2850 (1991). L. Feng, K. N. Ishihara, and P. H. Shingu, “The formation of metastable phases by mechanical alloying in the aluminum and copper system,” Metall. Trans. A 22, 2850 (1991).
11.
Zurück zum Zitat K. S. Mohammed, H. T. Naeem, and S. N. Iskak, “Study of the feasibility of producing Al–Ni intermetallic compounds by mechanical alloying,” Phys. Met. Metallogr. 117, 795–804 (2016).CrossRef K. S. Mohammed, H. T. Naeem, and S. N. Iskak, “Study of the feasibility of producing Al–Ni intermetallic compounds by mechanical alloying,” Phys. Met. Metallogr. 117, 795–804 (2016).CrossRef
12.
Zurück zum Zitat R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 88–90, 595–602 (1992).CrossRef R. B. Schwarz, S. Srinivasan, and P. B. Desch, “Synthesis of metastable aluminum-based intermetallics by mechanical alloying,” Mater. Sci. Forum 8890, 595–602 (1992).CrossRef
13.
Zurück zum Zitat L. D’Angelo, J. Ochoa, and G. González, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 20–21, 231–236 (2004).CrossRef L. D’Angelo, J. Ochoa, and G. González, “Comparative study for the formation of the NiAl, TiAl, FeAl intermetallic compounds by mechanical alloying,” J. Metastable Nanocryst. Mater. 20–21, 231–236 (2004).CrossRef
14.
Zurück zum Zitat I. G. Brodova, A. Yu. Volkov, I. G. Shirinkina, A. A. Kalonov, T. I. Yablonskikh, V. V. Astaf’ev, and L. V. Elokhina, “Evolution of the structure and properties of Al/Cu/Mg ternary composites during thermomechanical treatment,” Phys. Met. Metallogr. 119, 1210–1216 (2018).CrossRef I. G. Brodova, A. Yu. Volkov, I. G. Shirinkina, A. A. Kalonov, T. I. Yablonskikh, V. V. Astaf’ev, and L. V. Elokhina, “Evolution of the structure and properties of Al/Cu/Mg ternary composites during thermomechanical treatment,” Phys. Met. Metallogr. 119, 1210–1216 (2018).CrossRef
15.
Zurück zum Zitat E. P. Elsukov, A. L. Ul’yanov, V. E. Porsev, D. A. Kolodkin, A. V. Zagainov, and O. M. Nemtsova, “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys,” Phys. Met. Metallogr. 119, 153–160 (2018).CrossRef E. P. Elsukov, A. L. Ul’yanov, V. E. Porsev, D. A. Kolodkin, A. V. Zagainov, and O. M. Nemtsova, “Peculiarities of mechanical alloying of high-concentration Fe–Cr alloys,” Phys. Met. Metallogr. 119, 153–160 (2018).CrossRef
16.
Zurück zum Zitat E. V. Voronina, A. K. Al’Saedi, A. G. Ivanova, A. K. Arzhnikov, and E. N. Dulov, “Structural and phase transformations occurring during preparation of ordered ternary Fe–Al–M alloys (with M = Ga, B, V, and Mn) by mechanical alloying,” Phys. Met. Metallogr. 120, 1213–1220 (2019).CrossRef E. V. Voronina, A. K. Al’Saedi, A. G. Ivanova, A. K. Arzhnikov, and E. N. Dulov, “Structural and phase transformations occurring during preparation of ordered ternary Fe–Al–M alloys (with M = Ga, B, V, and Mn) by mechanical alloying,” Phys. Met. Metallogr. 120, 1213–1220 (2019).CrossRef
17.
Zurück zum Zitat H. Bakker, “Miedema’s semi-empirical model for estimating enthalpies in alloys,” Mater. Sci. Briefings 1, 1–80 (1988). H. Bakker, “Miedema’s semi-empirical model for estimating enthalpies in alloys,” Mater. Sci. Briefings 1, 1–80 (1988).
18.
Zurück zum Zitat T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz, and N. Z. Lyakhov, “Copper–tin materials for tribotechnical purposes,” Inorg. Mater.: Appl. Res. 11, 744–749 (2020).CrossRef T. F. Grigoreva, S. A. Kovaleva, V. I. Zhornik, S. V. Vosmerikov, P. A. Vityaz, and N. Z. Lyakhov, “Copper–tin materials for tribotechnical purposes,” Inorg. Mater.: Appl. Res. 11, 744–749 (2020).CrossRef
19.
Zurück zum Zitat S. A. Kovaleva, P. A. Vityaz’, and T. F. Grigoreva, “Mechanochemical approach to increasing the microhardness of metallic tribological materials,” in Actual Problems of Strength, Ed. by V. V. Rubanik (Tipogr. Pobeda, Molodechno, 2020), Ch. 16, pp. 178–189. S. A. Kovaleva, P. A. Vityaz’, and T. F. Grigoreva, “Mechanochemical approach to increasing the microhardness of metallic tribological materials,” in Actual Problems of Strength, Ed. by V. V. Rubanik (Tipogr. Pobeda, Molodechno, 2020), Ch. 16, pp. 178–189.
20.
Zurück zum Zitat T. F. Grigoreva, S. A. Petrova, S. A. Kovaleva, D. V. Dudina, I. S. Batraev, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, E. T. Devyatkina, T. A. Udalova, S. N. Polyakov, and N. Z. Lyakhov, “Mechanochemical synthesis of Cu–Al alloyed powders and their consolidation by spark plasma sintering,” Phys. Met. Metallogr. 122, 681–687 (2021).CrossRef T. F. Grigoreva, S. A. Petrova, S. A. Kovaleva, D. V. Dudina, I. S. Batraev, T. Yu. Kiseleva, S. I. Zholudev, S. V. Vosmerikov, E. T. Devyatkina, T. A. Udalova, S. N. Polyakov, and N. Z. Lyakhov, “Mechanochemical synthesis of Cu–Al alloyed powders and their consolidation by spark plasma sintering,” Phys. Met. Metallogr. 122, 681–687 (2021).CrossRef
21.
Zurück zum Zitat E. G. Avvakumov, Mechanical Activation of Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian]. E. G. Avvakumov, Mechanical Activation of Chemical Processes (Nauka, Novosibirsk, 1986) [in Russian].
22.
Zurück zum Zitat DIFFRAC plus :EVA (Bruker AXS, Karlsruhe, 2008). DIFFRAC plus :EVA (Bruker AXS, Karlsruhe, 2008).
23.
Zurück zum Zitat Powder Diffraction File PDF4+, Release 2020 (International Centre for Diffraction Data, Newtown Square, PA, 2020) Powder Diffraction File PDF4+, Release 2020 (International Centre for Diffraction Data, Newtown Square, PA, 2020)
24.
Zurück zum Zitat J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-Ray Experiments, ENSP (Laboratoire des Matériaux et du Génie Physique, Grenoble, 2003). J. Laugier and B. Bochu, LMGP-Suite of Programs for the Interpretation of X-Ray Experiments, ENSP (Laboratoire des Matériaux et du Génie Physique, Grenoble, 2003).
25.
Zurück zum Zitat H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).CrossRef H. M. Rietveld, “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 65–71 (1969).CrossRef
26.
Zurück zum Zitat DIFFRAC plus :TOPAS (Bruker AXS, Karlsruhe, 2006). DIFFRAC plus :TOPAS (Bruker AXS, Karlsruhe, 2006).
27.
Zurück zum Zitat Phase Diagrams of Binary Metallic Systems: Handbook, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1. Phase Diagrams of Binary Metallic Systems: Handbook, Ed. by N.P. Lyakishev (Mashinostroenie, Moscow, 1996), Vol. 1.
28.
Zurück zum Zitat R. A. Andrievskii and A. M. Glezer, “Size effect in nanocrystalline materials: II. Mechanical and physical properties, Phys. Met. Metallogr. 89, 83–102 (2000). R. A. Andrievskii and A. M. Glezer, “Size effect in nanocrystalline materials: II. Mechanical and physical properties, Phys. Met. Metallogr. 89, 83–102 (2000).
29.
Zurück zum Zitat T. V. Ostanina, A. I. Shveikin, and P. V. Trusov, “The grain structure refinement of metals and alloys under severe plastic deformation: experimental data and analysis of mechanisms,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., No. 2, 85–111 (2020). T. V. Ostanina, A. I. Shveikin, and P. V. Trusov, “The grain structure refinement of metals and alloys under severe plastic deformation: experimental data and analysis of mechanisms,” Vestn. Perm. Nats. Issled. Politekh. Univ., Mekh., No. 2, 85–111 (2020).
30.
Zurück zum Zitat I. A. Ovid’ko, “Theories of grain growth and methods of its suppression in nanocrystalline and polycrystalline materials,” Mater. Phys. Mech. 8 (2), 174–198 (2009). I. A. Ovid’ko, “Theories of grain growth and methods of its suppression in nanocrystalline and polycrystalline materials,” Mater. Phys. Mech. 8 (2), 174–198 (2009).
Metadaten
Titel
Aluminum Matrix Composites Reinforced with Cu9Al4 Particles: Mechanochemical Synthesis and Consolidation by the Spark Plasma Sintering
verfasst von
T. F. Grigoreva
D. V. Dudina
S. A. Petrova
S. A. Kovaleva
I. S. Batraev
S. V. Vosmerikov
E. T. Devyatkina
N. Z. Lyakhov
Publikationsdatum
01.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X2108007X

Weitere Artikel der Ausgabe 8/2021

Physics of Metals and Metallography 8/2021 Zur Ausgabe