Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2021

01.08.2021 | STRENGTH AND PLASTICITY

Micromechanical Characteristics of the Surface Layer of Metastable Austenitic Steel after Frictional Treatment

verfasst von: R. A. Savrai, Yu. M. Kolobylin, E. G. Volkova

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the frictional treatment with a sliding indenter on the micromechanical properties of the austenitic corrosion-resistant chromium–nickel AISI 321 steel (16.80 wt % Cr, 8.44 wt % Ni) has been investigated. The instrumented microindentation results, which was performed on the surface of the steel and at different depths from the surface, has shown the exponential distribution of maximum hmax and permanent hp indentation depths, Martens hardness HM, indentation hardness at the maximum load HIT, elastic reverse deformation work of indentation We, total mechanical work of indentation Wt, elastic recovery Rе, ratio of indentation hardness to contact elastic modulus НIT/Е*, power ratio \({{H_{{{\text{IT}}}}^{3}} \mathord{\left/ {\vphantom {{H_{{{\text{IT}}}}^{3}} {{{E}^{{*2}}}}}} \right. \kern-0em} {{{E}^{{*2}}}}}\), and plasticity index δA over the depth of the hardened gradient layer. In this case, the HM, HIT, We, Rе, НIT/Е*, and \({{H_{{{\text{IT}}}}^{3}} \mathord{\left/ {\vphantom {{H_{{{\text{IT}}}}^{3}} {{{E}^{{*2}}}}}} \right. \kern-0em} {{{E}^{{*2}}}}}\) values are the highest, whereas the hmax, hp, Wt, and δA values are the lowest for the steel surface. The E* contact elastic modulus of AISI 321 steel also increases after the frictional treatment. It is distributed nonmonotonously over the depth of the hardened layer. This can be explained by the formation of different dislocation structures on the steel surface and in the underlying layers. The indentation results have shown that the frictional treatment increases the resistance to mechanical action of both the steel surface and the hardened layer with a depth of to 500 µm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, and I. Yu Malygina, “Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension,” Surf. Coat. Technol. 205 (3), 841–852 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.025CrossRef A. V. Makarov, R. A. Savrai, N. A. Pozdejeva, S. V. Smirnov, D. I. Vichuzhanin, L. G. Korshunov, and I. Yu Malygina, “Effect of hardening friction treatment with hard-alloy indenter on microstructure, mechanical properties, and deformation and fracture features of constructional steel under static and cyclic tension,” Surf. Coat. Technol. 205 (3), 841–852 (2010). https://​doi.​org/​10.​1016/​j.​surfcoat.​2010.​08.​025CrossRef
2.
Zurück zum Zitat A. V. Makarov and L. G. Korshunov, “Metallophysical foundations of nanostructuring frictional treatment of steels,” Phys. Met. Metallogr. 120, 303–311 (2019).CrossRef A. V. Makarov and L. G. Korshunov, “Metallophysical foundations of nanostructuring frictional treatment of steels,” Phys. Met. Metallogr. 120, 303–311 (2019).CrossRef
3.
Zurück zum Zitat A. V. Makarov, N. A. Pozdejeva, R. A. Savrai, A. S. Yurovskikh, and I. Yu. Malygina, “Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment,” J. Frict. Wear 33, 433–442 (2012).CrossRef A. V. Makarov, N. A. Pozdejeva, R. A. Savrai, A. S. Yurovskikh, and I. Yu. Malygina, “Improvement of wear resistance of quenched structural steel by nanostructuring frictional treatment,” J. Frict. Wear 33, 433–442 (2012).CrossRef
6.
Zurück zum Zitat A. V. Makarov, L. G. Korshunov, R. A. Savrai, N. A. Davydova, I. Yu. Malygina, and N. L. Chernenko, “Influence of prolonged heating on thermal softening, chemical composition, and evolution of the nanocrystalline structure formed in quenched high-carbon steel upon friction treatment,” Phys. Met. Metallogr. 115, 303–314 (2014).CrossRef A. V. Makarov, L. G. Korshunov, R. A. Savrai, N. A. Davydova, I. Yu. Malygina, and N. L. Chernenko, “Influence of prolonged heating on thermal softening, chemical composition, and evolution of the nanocrystalline structure formed in quenched high-carbon steel upon friction treatment,” Phys. Met. Metallogr. 115, 303–314 (2014).CrossRef
7.
Zurück zum Zitat A. V. Makarov, L. G. Korshunov, V. B. Vykhodets, T. E. Kurennykh, and R. A. Savrai, “Effect of strengthening friction treatment on the chemical composition, structure, and tribological properties of a high-carbon steel,” Phys. Met. Metallogr. 110, 507–521 (2010).CrossRef A. V. Makarov, L. G. Korshunov, V. B. Vykhodets, T. E. Kurennykh, and R. A. Savrai, “Effect of strengthening friction treatment on the chemical composition, structure, and tribological properties of a high-carbon steel,” Phys. Met. Metallogr. 110, 507–521 (2010).CrossRef
8.
Zurück zum Zitat A. V. Makarov, R. A. Savrai, P. A. Skorynina, and E. G. Volkova, “Development of methods for steel surface deformation nanostructuring,” Met. Sci. Heat Treat. 62, 61–69 (2020).CrossRef A. V. Makarov, R. A. Savrai, P. A. Skorynina, and E. G. Volkova, “Development of methods for steel surface deformation nanostructuring,” Met. Sci. Heat Treat. 62, 61–69 (2020).CrossRef
9.
Zurück zum Zitat R. A. Savrai and A. L. Osintseva, “Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests,” Mater. Sci. Eng., A 802, 140679 (2021).CrossRef R. A. Savrai and A. L. Osintseva, “Effect of hardened surface layer obtained by frictional treatment on the contact endurance of the AISI 321 stainless steel under contact gigacycle fatigue tests,” Mater. Sci. Eng., A 802, 140679 (2021).CrossRef
10.
Zurück zum Zitat R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment,” Diagn., Resour. Mech. Mater. Struct., No. 5, 43–62 (2017). http://dream-journal.org/issues/2017-5/2017-5_149.html. R. A. Savrai, A. V. Makarov, I. Yu. Malygina, S. A. Rogovaya, and A. L. Osintseva, “Improving the strength of the AISI 321 austenitic stainless steel by frictional treatment,” Diagn., Resour. Mech. Mater. Struct., No. 5, 43–62 (2017). http://​dream-journal.​org/​issues/​2017-5/​2017-5_​149.​html.​
11.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4 (69), 80–92 (2015). A. V. Makarov, P. A. Skorynina, A. L. Osintseva, A. S. Yurovskikh, and R. A. Savrai, “Improving the tribological properties of austenitic 12Kh18N10T steel by nanostructuring frictional treatment,” Obrab. Met. (Tekhnol., Oborud., Instrum.), No. 4 (69), 80–92 (2015).
12.
Zurück zum Zitat N. A. Narkevich, I. A. Shulepov, and Yu. P. Mironov, “Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment,” Phys. Met. Metallogr. 118, 399–406 (2017).CrossRef N. A. Narkevich, I. A. Shulepov, and Yu. P. Mironov, “Structure, mechanical, and tribotechnical properties of an austenitic nitrogen steel after frictional treatment,” Phys. Met. Metallogr. 118, 399–406 (2017).CrossRef
14.
Zurück zum Zitat D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, and I. Yu. Malygina, “Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter,” J. Mach. Manuf. Reliab. 40, 554–560 (2011).CrossRef D. I. Vychuzhanin, A. V. Makarov, S. V. Smirnov, N. A. Pozdeeva, and I. Yu. Malygina, “Stress and strain and damage during frictional strengthening treatment of flat steel surface with a sliding cylindrical indenter,” J. Mach. Manuf. Reliab. 40, 554–560 (2011).CrossRef
15.
Zurück zum Zitat V. P. Kuznetsov, A. V. Makarov, S. G. Psakhie, R. A. Savrai, I. Yu. Malygina, and N. A. Davydova, “Tribological aspects in nanostructuring burnishing of structural steels,” Phys. Mesomech. 17, 250–264 (2014).CrossRef V. P. Kuznetsov, A. V. Makarov, S. G. Psakhie, R. A. Savrai, I. Yu. Malygina, and N. A. Davydova, “Tribological aspects in nanostructuring burnishing of structural steels,” Phys. Mesomech. 17, 250–264 (2014).CrossRef
16.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel,” AIP Conf. Proc. 1785, 040035 (2016). https://doi.org/10.1063/1.4967092CrossRef A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the technological conditions of frictional treatment on the structure, phase composition and hardening of metastable austenitic steel,” AIP Conf. Proc. 1785, 040035 (2016). https://​doi.​org/​10.​1063/​1.​4967092CrossRef
17.
Zurück zum Zitat R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: mechanical properties,” Mater. Sci. Eng., A 734, 513–518 (2018).CrossRef R. A. Savrai and A. V. Makarov, “Effect of nanostructuring frictional treatment on the properties of high-carbon pearlitic steel. Part II: mechanical properties,” Mater. Sci. Eng., A 734, 513–518 (2018).CrossRef
18.
Zurück zum Zitat A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017).CrossRef A. V. Makarov, P. A. Skorynina, A. S. Yurovskikh, and A. L. Osintseva, “Effect of the conditions of the nanostructuring frictional treatment process on the structural and phase states and the strengthening of metastable austenitic steel,” Phys. Met. Metallogr. 118, 1225–1235 (2017).CrossRef
19.
Zurück zum Zitat N. B. Pugacheva, T. M. Bykova, and E. B. Trushina, “Effect of the composition of the base steel on the structure and properties of diffusion boride coatings,” Uprochnyayushchie Tekhnol Pokrytiya, No. 4, 3–7 (2013). N. B. Pugacheva, T. M. Bykova, and E. B. Trushina, “Effect of the composition of the base steel on the structure and properties of diffusion boride coatings,” Uprochnyayushchie Tekhnol Pokrytiya, No. 4, 3–7 (2013).
20.
Zurück zum Zitat N. B. Pugacheva, E. B. Trushina, and T. M. Bykova, “Research on the tribological properties of iron borides as diffusion coatings,” J. Frict. Wear 35, 489–496 (2014).CrossRef N. B. Pugacheva, E. B. Trushina, and T. M. Bykova, “Research on the tribological properties of iron borides as diffusion coatings,” J. Frict. Wear 35, 489–496 (2014).CrossRef
21.
Zurück zum Zitat R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel,” Phys. Met. Metallogr. 121, 1015–1020 (2020).CrossRef R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Effect of liquid carburizing at lowered temperature on the micromechanical characteristics of metastable austenitic steel,” Phys. Met. Metallogr. 121, 1015–1020 (2020).CrossRef
22.
Zurück zum Zitat GOST (State Standard) R 8.748-2011 (ISO 14577-1:2002): State System for Ensuring the Uniformity of Measurements. Metallic Materials. Instrumented Indentation Test for Hardness and Materials Parameters. Part 1: Test Method (Standartinform, Moscow, 2011) [in Russian]. GOST (State Standard) R 8.748-2011 (ISO 14577-1:2002): State System for Ensuring the Uniformity of Measurements. Metallic Materials. Instrumented Indentation Test for Hardness and Materials Parameters. Part 1: Test Method (Standartinform, Moscow, 2011) [in Russian].
23.
Zurück zum Zitat Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus and the work of indentation,” Appl. Phys. Lett. 73 (5), 614–618 (1998).CrossRef Y. T. Cheng and C. M. Cheng, “Relationships between hardness, elastic modulus and the work of indentation,” Appl. Phys. Lett. 73 (5), 614–618 (1998).CrossRef
24.
Zurück zum Zitat T. F. Page and S. V. Hainsworth, “Using nanoindentation techniques for the characterization of coated systems: a critique,” Surf. Coat. Technol. 61 (1–3), 201–208 (1993).CrossRef T. F. Page and S. V. Hainsworth, “Using nanoindentation techniques for the characterization of coated systems: a critique,” Surf. Coat. Technol. 61 (1–3), 201–208 (1993).CrossRef
25.
Zurück zum Zitat M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52 (6), 966–974 (2007).CrossRef M. I. Petrzhik and E. A. Levashov, “Modern methods for investigating functional surfaces of advanced materials by mechanical contact testing,” Crystallogr. Rep. 52 (6), 966–974 (2007).CrossRef
26.
Zurück zum Zitat P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure-property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174–175, 725–731 (2003).CrossRef P. H. Mayrhofer, C. Mitterer, and J. Musil, “Structure-property relationships in single- and dual-phase nanocrystalline hard coatings,” Surf. Coat. Technol. 174175, 725–731 (2003).CrossRef
27.
Zurück zum Zitat Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, “Characteristic of plasticity determined by indentation,” Vopr. At. Nauki Tekh., No. 4, 182–187 (2011). Yu. V. Mil’man, S. I. Chugunova, and I. V. Goncharova, “Characteristic of plasticity determined by indentation,” Vopr. At. Nauki Tekh., No. 4, 182–187 (2011).
28.
Zurück zum Zitat R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Structure and surface properties of metastable austenitic steel subjected to liquid carburizing at a reduced temperature,” Phys. Met. Metallogr. 121, 65–71 (2020).CrossRef R. A. Savrai, P. A. Skorynina, A. V. Makarov, and A. L. Osintseva, “Structure and surface properties of metastable austenitic steel subjected to liquid carburizing at a reduced temperature,” Phys. Met. Metallogr. 121, 65–71 (2020).CrossRef
29.
Zurück zum Zitat M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Grain growth upon annealing of armco iron with various ultrafine-grained structures produced by high-pressure torsion deformation,” Phys. Met. Metallogr. 99, 276–285 (2005). M. V. Degtyarev, L. M. Voronova, and T. I. Chashchukhina, “Grain growth upon annealing of armco iron with various ultrafine-grained structures produced by high-pressure torsion deformation,” Phys. Met. Metallogr. 99, 276–285 (2005).
30.
Zurück zum Zitat J. A. Benito, J. Jorba, J. M. Manero, and A. Roca, “Change of Young’s modulus of cold-deformed pure iron in a tensile test,” Metall. Mater. Trans. A 36 (12), 3317–3324 (2005).CrossRef J. A. Benito, J. Jorba, J. M. Manero, and A. Roca, “Change of Young’s modulus of cold-deformed pure iron in a tensile test,” Metall. Mater. Trans. A 36 (12), 3317–3324 (2005).CrossRef
31.
Zurück zum Zitat H. M. Ledbetter and S. A. Kim, “Low temperature elastic constants of deformed polycrystalline copper,” Mater. Sci. Eng., A 101, 87–92 (1988). H. M. Ledbetter and S. A. Kim, “Low temperature elastic constants of deformed polycrystalline copper,” Mater. Sci. Eng., A 101, 87–92 (1988).
32.
Zurück zum Zitat S. Shima and M. Yang, “A study of accuracy in an intelligent V-bending process for sheet metals: change in Young’s modulus due to plastic deformation and its effect on springback,” J. Soc. Mater. Sci. Jpn. 44 (500), 578–583 (1995).CrossRef S. Shima and M. Yang, “A study of accuracy in an intelligent V-bending process for sheet metals: change in Young’s modulus due to plastic deformation and its effect on springback,” J. Soc. Mater. Sci. Jpn. 44 (500), 578–583 (1995).CrossRef
33.
Zurück zum Zitat F. Morestin and M. Boivin, “On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software,” Nucl. Eng. Des. 162 (1), 107–116 (1996).CrossRef F. Morestin and M. Boivin, “On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software,” Nucl. Eng. Des. 162 (1), 107–116 (1996).CrossRef
Metadaten
Titel
Micromechanical Characteristics of the Surface Layer of Metastable Austenitic Steel after Frictional Treatment
verfasst von
R. A. Savrai
Yu. M. Kolobylin
E. G. Volkova
Publikationsdatum
01.08.2021
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2021
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X21080123

Weitere Artikel der Ausgabe 8/2021

Physics of Metals and Metallography 8/2021 Zur Ausgabe