Skip to main content
Top
Published in: Journal of Computational Electronics 3/2018

26-05-2018

Ambipolar leakage suppression in electron–hole bilayer TFET: investigation and analysis

Authors: Ashita, Sajad A. Loan, Abdullah G. Alharbi, Mohammad Rafat

Published in: Journal of Computational Electronics | Issue 3/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we propose and simulate two new structures of electron–hole bilayer tunnel field-effect transistors (EHBTFET). The proposed devices are n-heterogate with \(\hbox {M}_{1}\) as overlap gate, \(\hbox {M}_{2}\) as underlap gate and employs a high-k dielectric pocket in the drain underlap. Proposed structure 1 employs symmetric underlaps (Lgs = Lgd = Lu). The leakage analysis of this structure shows that the lateral ambipolar leakage between channel and drain is reduced by approximately three orders, the OFF-state leakage is reduced by one order, and the \(I_{\mathrm{ON}}/I_{\mathrm{OFF}}\) ratio is increased by more than one order at \(V_\mathrm{{GS}}=V_{\mathrm{DS}} =1.0\) V as compared to the conventional Si EHBTFET. The performance is improved further by employing asymmetric underlaps (\(\hbox {Lgs}\ne \hbox {Lgd}\)) with double dielectric pockets at source and drain, called as proposed structure 2. The pocket dimensions have been optimized, and an average subthreshold swing of 17.7 mV/dec (25.5% improved) over five decades of current is achieved with an ON current of \(0.23~\upmu \hbox {A}/\upmu \hbox {m}\) (11% improved) in proposed structure 2 in comparison with the conventional EHBTFET. Further, the parasitic leakage paths between overlap/underlap interfaces are blocked and the OFF-state leakage is reduced by more than two orders. A high \(I_{\mathrm{ON}}/I_{\mathrm{OFF}}\,\hbox {ratio}~>10^{9}\) (two orders higher) is achieved at \(V_{\mathrm{DS}} =V_{\mathrm{GS}} =1.0~\hbox {V}\) in the proposed structure 2 in comparison with the conventional one.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef
2.
go back to reference Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)CrossRef Lu, H., Seabaugh, A.: Tunnel field-effect transistors: state-of-the-art. IEEE J. Electron Devices Soc. 2(4), 44–49 (2014)CrossRef
3.
go back to reference Mookerjea, S., Datta, S.: Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25 V supply voltage logic applications. In: Device Research Conference, 2008, Santa Barbara, CA, pp. 47–48 (2008) Mookerjea, S., Datta, S.: Comparative study of Si, Ge and InAs based steep subthreshold slope tunnel transistors for 0.25 V supply voltage logic applications. In: Device Research Conference, 2008, Santa Barbara, CA, pp. 47–48 (2008)
4.
go back to reference Kim, S.H., Kam, H., Hu, C., Liu, T.J.K.: Germanium-source tunnel field effect transistors with record high \(I_{\rm ON}/I_{\rm OFF}\). In: 2009 Symposium on VLSI technology, Honolulu, HI, pp. 178–179 (2009) Kim, S.H., Kam, H., Hu, C., Liu, T.J.K.: Germanium-source tunnel field effect transistors with record high \(I_{\rm ON}/I_{\rm OFF}\). In: 2009 Symposium on VLSI technology, Honolulu, HI, pp. 178–179 (2009)
5.
go back to reference Cho, S., Kang, I.M., Kamins, T.I., Park, B.G., Jr, J.S.H.: Silicon-compatible compound semiconductor tunneling field-effect transistor for high performance and low standby power operation. Appl. Phys. Lett. 99(243505), 1–4 (2011) Cho, S., Kang, I.M., Kamins, T.I., Park, B.G., Jr, J.S.H.: Silicon-compatible compound semiconductor tunneling field-effect transistor for high performance and low standby power operation. Appl. Phys. Lett. 99(243505), 1–4 (2011)
6.
go back to reference Zhou, G., Li, R., Vasen, T., Qi, M., Chae, S., Lu, Y., Zhang, Q., Zhu, H., Kuo, J. M., Kosel, T., Wistey, M., Fay, P., Seabaugh, A., Xing, H.: Novel gate-recessed vertical InAs/GaSb TFETs with record high I\(_{\rm ON}\) of 180 \(\mu \)A/\(\mu \)m at V\(_{\rm DS} = 0.5\) V. In: 2012 IEEE International on Electron Devices Meeting (IEDM), San Francisco, CA, pp. 32.6.1–32.6.4 (2012) Zhou, G., Li, R., Vasen, T., Qi, M., Chae, S., Lu, Y., Zhang, Q., Zhu, H., Kuo, J. M., Kosel, T., Wistey, M., Fay, P., Seabaugh, A., Xing, H.: Novel gate-recessed vertical InAs/GaSb TFETs with record high I\(_{\rm ON}\) of 180 \(\mu \)A/\(\mu \)m at V\(_{\rm DS} = 0.5\) V. In: 2012 IEEE International on Electron Devices Meeting (IEDM), San Francisco, CA, pp. 32.6.1–32.6.4 (2012)
7.
go back to reference Koswatta, S.O., Koester, S.J., Haensch, W.: On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57(12), 3222–3230 (2010)CrossRef Koswatta, S.O., Koester, S.J., Haensch, W.: On the possibility of obtaining MOSFET-like performance and sub-60-mV/dec swing in 1-D broken-gap tunnel transistors. IEEE Trans. Electron Devices 57(12), 3222–3230 (2010)CrossRef
8.
go back to reference Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and \(\ll \) 60 mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting, San Francisco, CA 2008, pp. 1–3 (2008) Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat, K.: Double-gate strained-Ge heterostructure tunneling FET (TFET) with record high drive currents and \(\ll \) 60 mV/dec subthreshold slope. In: IEEE International Electron Devices Meeting, San Francisco, CA 2008, pp. 1–3 (2008)
9.
go back to reference Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans. Electron Devices 62(10), 3357–3364 (2015)CrossRef Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high-performance source engineered charge plasma-based Schottky MOSFET on SOI. IEEE Trans. Electron Devices 62(10), 3357–3364 (2015)CrossRef
10.
go back to reference Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 14(2), 477–485 (2015)CrossRef Bashir, F., Loan, S.A., Rafat, M., Alamoud, A.R.M., Abbasi, S.A.: A high performance gate engineered charge plasma based tunnel field effect transistor. J. Comput. Electron. 14(2), 477–485 (2015)CrossRef
11.
go back to reference Toh, E.H., Wang, G.H., Samudra, G., Yeo, Y.C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 1–5 (2008)CrossRef Toh, E.H., Wang, G.H., Samudra, G., Yeo, Y.C.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 1–5 (2008)CrossRef
12.
go back to reference Naderi, A., Ghodrati, M.: Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur. Phys. J. Plus 132(510), 1–11 (2017) Naderi, A., Ghodrati, M.: Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur. Phys. J. Plus 132(510), 1–11 (2017)
13.
go back to reference Naderi, A., Tahne, B.A.: T-CNTFET with gate-drain overlap and two different gate metals: a novel structure with increased saturation current. ECS J. Solid State Sci. Technol. 5(8), 3032–3036 (2016)CrossRef Naderi, A., Tahne, B.A.: T-CNTFET with gate-drain overlap and two different gate metals: a novel structure with increased saturation current. ECS J. Solid State Sci. Technol. 5(8), 3032–3036 (2016)CrossRef
14.
go back to reference Naderi, A.: Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions. J. Comput. Electron. 15(2), 347–357 (2016)CrossRef Naderi, A.: Double gate graphene nanoribbon field effect transistor with electrically induced junctions for source and drain regions. J. Comput. Electron. 15(2), 347–357 (2016)CrossRef
15.
go back to reference Naderi, A.: Improvement in the performance of graphene nanoribbon pin tunneling field effect transistors by applying lightly doped profile on drain region. Int. J. Mod. Phys. B 31(31), 1750248 (2017)CrossRef Naderi, A.: Improvement in the performance of graphene nanoribbon pin tunneling field effect transistors by applying lightly doped profile on drain region. Int. J. Mod. Phys. B 31(31), 1750248 (2017)CrossRef
16.
go back to reference Lattanzio, L., Michielis, L.D., Ionescu, A.M.: The electron–hole bilayer tunnel FET. Solid State Electron. 74, 85–90 (2012)CrossRef Lattanzio, L., Michielis, L.D., Ionescu, A.M.: The electron–hole bilayer tunnel FET. Solid State Electron. 74, 85–90 (2012)CrossRef
18.
go back to reference Ashita, S., Loan, A., Rafat, M.: A high-performance inverted-C tunnel junction FET with source-channel overlap pockets. IEEE Trans. Electron Devices 65(2), 763–768 (2018)CrossRef Ashita, S., Loan, A., Rafat, M.: A high-performance inverted-C tunnel junction FET with source-channel overlap pockets. IEEE Trans. Electron Devices 65(2), 763–768 (2018)CrossRef
19.
go back to reference Lattanzio, L., De Michielis, L., Ionescu, A.M.: Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33(2), 167–169 (2012)CrossRef Lattanzio, L., De Michielis, L., Ionescu, A.M.: Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Device Lett. 33(2), 167–169 (2012)CrossRef
20.
go back to reference Padilla, J.L., Alper, C., Gamiz, F., Ionescu, A.M.: Assessment of field-induced quantum-confinement in heterogate germanium electron–hole bilayer field effect transistor. Appl. Phys. Lett. 105(082108), 1–4 (2014) Padilla, J.L., Alper, C., Gamiz, F., Ionescu, A.M.: Assessment of field-induced quantum-confinement in heterogate germanium electron–hole bilayer field effect transistor. Appl. Phys. Lett. 105(082108), 1–4 (2014)
21.
go back to reference D’Amico, P., Marconcini, P., Fiori, G., Iannaccone, G.: Engineering interband tunneling in nanowires with diamond cubic or zincblende crystalline structure based on atomistic modeling. IEEE Trans. Nanotechnol. 12(5), 839–842 (2013)CrossRef D’Amico, P., Marconcini, P., Fiori, G., Iannaccone, G.: Engineering interband tunneling in nanowires with diamond cubic or zincblende crystalline structure based on atomistic modeling. IEEE Trans. Nanotechnol. 12(5), 839–842 (2013)CrossRef
22.
go back to reference Padilla, J.L., Alper, C., Godoy, A., Gámiz, F., Ionescu, A.M.: Impact of asymmetric configurations on the heterogate germanium electron–hole bilayer tunnel FET including quantum confinement. IEEE Trans. Electron Devices 62(11), 3560–3566 (2015)CrossRef Padilla, J.L., Alper, C., Godoy, A., Gámiz, F., Ionescu, A.M.: Impact of asymmetric configurations on the heterogate germanium electron–hole bilayer tunnel FET including quantum confinement. IEEE Trans. Electron Devices 62(11), 3560–3566 (2015)CrossRef
23.
go back to reference Padilla, J.L., Alper, C., Gamiz, F., Ionescu, A.M.: Switching behavior constraint in the heterogate electron–hole bilayer tunnel FET: the combined interplay between quantum confinement effects and asymmetric configurations. IEEE Trans. Electron Devices 63(6), 2570–2576 (2016)CrossRef Padilla, J.L., Alper, C., Gamiz, F., Ionescu, A.M.: Switching behavior constraint in the heterogate electron–hole bilayer tunnel FET: the combined interplay between quantum confinement effects and asymmetric configurations. IEEE Trans. Electron Devices 63(6), 2570–2576 (2016)CrossRef
24.
go back to reference Alpher, C., Palestri, P., Padilla, J.L., Ionescu, A.M.: Underlap counterdoping as an efficient means to suppress lateral leakage in the electron–hole bilayer tunnel FET. Semicond. Sci. Technol. 31(4), 1–6 (2016) Alpher, C., Palestri, P., Padilla, J.L., Ionescu, A.M.: Underlap counterdoping as an efficient means to suppress lateral leakage in the electron–hole bilayer tunnel FET. Semicond. Sci. Technol. 31(4), 1–6 (2016)
25.
go back to reference Teherani, J.T., Agarwal, S., Yablonovitch, E., Hoyt, J.L., Antoniadis, D.A.: Impact of quantization energy and gate leakage in bilayer tunneling transistors. IEEE Electron Device Lett. 34(2), 298–300 (2013)CrossRef Teherani, J.T., Agarwal, S., Yablonovitch, E., Hoyt, J.L., Antoniadis, D.A.: Impact of quantization energy and gate leakage in bilayer tunneling transistors. IEEE Electron Device Lett. 34(2), 298–300 (2013)CrossRef
26.
go back to reference Padilla, J.L., Alper, C., Gamiz, F., Ionescu, A.M.: Assessment of confinement-induced band-to-band tunneling leakage in the FinEHBTFET. In: 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Vienna, pp. 20–23 (2016) Padilla, J.L., Alper, C., Gamiz, F., Ionescu, A.M.: Assessment of confinement-induced band-to-band tunneling leakage in the FinEHBTFET. In: 2016 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), Vienna, pp. 20–23 (2016)
27.
go back to reference Jovanovic, V., Suligoj, T., Poljak, M., Civale, Y., Nanver, L.K.: Ultra high aspect-ratio FinFET technology. Solid State Electron. 54(9), 870–876 (2010)CrossRef Jovanovic, V., Suligoj, T., Poljak, M., Civale, Y., Nanver, L.K.: Ultra high aspect-ratio FinFET technology. Solid State Electron. 54(9), 870–876 (2010)CrossRef
28.
go back to reference Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., Seki, K.: Room-temperature single-electron memory. IEEE Trans. Electron Devices 41, 1628–1638 (1994)CrossRef Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F., Seki, K.: Room-temperature single-electron memory. IEEE Trans. Electron Devices 41, 1628–1638 (1994)CrossRef
29.
go back to reference Lee, H., et al.: Sub-5nm all-around gate FinFET for ultimate scaling. In: 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., Honolulu, HI, pp. 58–59 (2006) Lee, H., et al.: Sub-5nm all-around gate FinFET for ultimate scaling. In: 2006 Symposium on VLSI Technology, 2006. Digest of Technical Papers., Honolulu, HI, pp. 58–59 (2006)
30.
go back to reference Ishii, T., Osabe, T., Mine, T., Sano, T., Atwood, B., Yano, K.: A poly-silicon TFT with a sub-5-nm thick channel for low-power gain cell memory in mobile applications. IEEE Trans. Electron Devices 51(11), 1805–1810 (2004)CrossRef Ishii, T., Osabe, T., Mine, T., Sano, T., Atwood, B., Yano, K.: A poly-silicon TFT with a sub-5-nm thick channel for low-power gain cell memory in mobile applications. IEEE Trans. Electron Devices 51(11), 1805–1810 (2004)CrossRef
31.
go back to reference Hasan, M., Park, H., Yang, H., Hwang, H., Jung, H., Jong-Ho, : Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application. Appl. Phys. Lett. 90(103510), 1–3 (1980) Hasan, M., Park, H., Yang, H., Hwang, H., Jung, H., Jong-Ho, : Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application. Appl. Phys. Lett. 90(103510), 1–3 (1980)
32.
go back to reference Michaelson, H.B.: The work function of the elements and its periodicity. J. Appl. Phys. 48(11), 4279–4733 (1977)CrossRef Michaelson, H.B.: The work function of the elements and its periodicity. J. Appl. Phys. 48(11), 4279–4733 (1977)CrossRef
34.
go back to reference Agarwal, S., Teherani, J.T., Hoyt, J.L., Antoniadis, D.A., Yablonovitch, E.: Engineering the electron–hole bilayer tunneling field-effect transistor. IEEE Trans. Electron Devices 61(5), 1599–1606 (2014)CrossRef Agarwal, S., Teherani, J.T., Hoyt, J.L., Antoniadis, D.A., Yablonovitch, E.: Engineering the electron–hole bilayer tunneling field-effect transistor. IEEE Trans. Electron Devices 61(5), 1599–1606 (2014)CrossRef
35.
go back to reference Darbandy, G., Ritzenthaler, R., Lime, F., Garduno, I., Estrada, M., Cerdeira, A., Iniguez, B.: Analytical modeling of direct tunneling current through gate stacks for the determination of suitable high-k dielectrics for nanoscale double-gate MOSFETs. Semicond. Sci. Technol. 26(4), 1–8 (2011)CrossRef Darbandy, G., Ritzenthaler, R., Lime, F., Garduno, I., Estrada, M., Cerdeira, A., Iniguez, B.: Analytical modeling of direct tunneling current through gate stacks for the determination of suitable high-k dielectrics for nanoscale double-gate MOSFETs. Semicond. Sci. Technol. 26(4), 1–8 (2011)CrossRef
36.
go back to reference Robertson, J.: High dielectric constant oxides. Eur. Phy. J. Appl. Phys. 28(3), 265–291 (2007)CrossRef Robertson, J.: High dielectric constant oxides. Eur. Phy. J. Appl. Phys. 28(3), 265–291 (2007)CrossRef
37.
go back to reference Eminente, S., Cristoloveanu, S., Clerc, R., Ohata, A., Ghibaudo, G.: Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects. Solid State Electron. 51, 239–244 (2007)CrossRef Eminente, S., Cristoloveanu, S., Clerc, R., Ohata, A., Ghibaudo, G.: Ultra-thin fully-depleted SOI MOSFETs: special charge properties and coupling effects. Solid State Electron. 51, 239–244 (2007)CrossRef
38.
go back to reference Esseni, D., Pala, M.G., Rollo, T.: Essential physics of the OFF-state current in nanoscale MOSFETs and tunnel FETs. IEEE Trans. Electron Devices 62(9), 3084–3091 (2015)CrossRef Esseni, D., Pala, M.G., Rollo, T.: Essential physics of the OFF-state current in nanoscale MOSFETs and tunnel FETs. IEEE Trans. Electron Devices 62(9), 3084–3091 (2015)CrossRef
39.
go back to reference Zhang, Q., Lu, Y., Richter, C.A., Jena, D., Seabaugh, A.: Optimum bandgap and supply voltage in tunnel FETs. IEEE Trans. Electron Devices 61(8), 2719–2724 (2014)CrossRef Zhang, Q., Lu, Y., Richter, C.A., Jena, D., Seabaugh, A.: Optimum bandgap and supply voltage in tunnel FETs. IEEE Trans. Electron Devices 61(8), 2719–2724 (2014)CrossRef
Metadata
Title
Ambipolar leakage suppression in electron–hole bilayer TFET: investigation and analysis
Authors
Ashita
Sajad A. Loan
Abdullah G. Alharbi
Mohammad Rafat
Publication date
26-05-2018
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 3/2018
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-018-1184-y

Other articles of this Issue 3/2018

Journal of Computational Electronics 3/2018 Go to the issue