Skip to main content
Top
Published in: Journal of Materials Science 4/2018

12-10-2017 | Energy materials

Amorphous MnO2-modified Li3V2(PO4)3/C as high-performance cathode for LIBs: the double effects of surface coating

Authors: Baoyu Wang, Dandan Sun, Ruisong Guo, Zhichao Liu, Leichao Meng, Mei Zheng, Fuyun Li, Tingting Li, Yani Luo, Hong Jiang

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

MnO2-modified Li3V2(PO4)3/C (LVP/C) composites with plate-like structure were prepared via an improved sol–gel method followed by PVA-assisted suspension coating. The plate-like structure provides an enlarged contact area between the electrolyte and electrode, alleviating the Li+ diffusion and e transport during the reaction process. The formed hybrid coating layer consisted of C and MnO2 has the double effects, that is, the formation of a complete continuous protective layer on the surface of LVP particles and the simultaneous improvement of electronic and ionic conductivities. This coating layer not only prevents the V3+ dissolution into the electrolyte, but also achieves the simultaneous Li+/e diffusion at charge–discharge process. Benefiting from the unique structure and the synergistic effect of C and MnO2, the 3 wt% MnO2-modified LVP/C material (M-3) exhibits the most excellent electrochemical performance among all the samples. At a high current rate of 5 C, the M-3 electrode delivers a discharge capacity of 113.2 mAh g−1 and corresponds to capacity retention almost 100% after 100 cycles. Even at low temperatures of 0 and − 20 °C, the discharge capacities of M-3 are 102.4 mAh g−1 at 2 C and 81.6 mAh g−1 at 1 C, with capacity retention of 98.8 and 97.3%, respectively. The enhanced electrochemical performance of M-3 is mainly attributed to the cooperation of C and MnO2, which provides large specific surface area and complete conductive network. As a result, the MnO2-modified LVP/C composites with the plate-like structure can be a promising candidate as cathode materials for LIBs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Stempien JP, Chan SH (2017) Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas. J Power Sources 340:347–355CrossRef Stempien JP, Chan SH (2017) Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas. J Power Sources 340:347–355CrossRef
2.
go back to reference Li Y, Yang J, Song J (2017) Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles. Renew Sustain Energy Rev 71:645–651CrossRef Li Y, Yang J, Song J (2017) Design principles and energy system scale analysis technologies of new lithium-ion and aluminum-ion batteries for sustainable energy electric vehicles. Renew Sustain Energy Rev 71:645–651CrossRef
3.
go back to reference Zhou Y, Lee Y, Sun H et al (2017) Coating solution for high-voltage cathode: AlF3 atomic layer deposition for freestanding licoo2 electrodes with high energy density and excellent flexibility. ACS Appl Mater Interfaces 9:9614–9619CrossRef Zhou Y, Lee Y, Sun H et al (2017) Coating solution for high-voltage cathode: AlF3 atomic layer deposition for freestanding licoo2 electrodes with high energy density and excellent flexibility. ACS Appl Mater Interfaces 9:9614–9619CrossRef
4.
go back to reference Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105CrossRef Yi T-F, Mei J, Zhu Y-R (2016) Key strategies for enhancing the cycling stability and rate capacity of LiNi0.5Mn1.5O4 as high-voltage cathode materials for high power lithium-ion batteries. J Power Sources 316:85–105CrossRef
5.
go back to reference Eftekhari A (2017) LiFePO4/C nanocomposites for lithium-ion batteries. J Power Sources 343:395–411CrossRef Eftekhari A (2017) LiFePO4/C nanocomposites for lithium-ion batteries. J Power Sources 343:395–411CrossRef
6.
go back to reference Gao H, Li Y, Park K, Goodenough JB (2016) Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater 28:6553–6559CrossRef Gao H, Li Y, Park K, Goodenough JB (2016) Sodium extraction from NASICON-structured Na3MnTi(PO4)3 through Mn(III)/Mn(II) and Mn(IV)/Mn(III) redox couples. Chem Mater 28:6553–6559CrossRef
7.
go back to reference Ivanishchev AV, Ushakov AV, Ivanishcheva IA et al (2017) Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim Acta 230:479–491CrossRef Ivanishchev AV, Ushakov AV, Ivanishcheva IA et al (2017) Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim Acta 230:479–491CrossRef
8.
go back to reference Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef Yamada A, Chung SC, Hinokuma K (2001) Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc 148:A224–A229CrossRef
9.
go back to reference Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38CrossRef Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38CrossRef
10.
go back to reference Ren M, Yang M, Liu W et al (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321CrossRef Ren M, Yang M, Liu W et al (2016) Co-modification of nitrogen-doped graphene and carbon on Li3V2(PO4)3 particles with excellent long-term and high-rate performance for lithium storage. J Power Sources 326:313–321CrossRef
11.
go back to reference Ivanishchev AV, Ushakov AV, Ivanishcheva IA et al (2017) Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim Acta 230:479–491CrossRef Ivanishchev AV, Ushakov AV, Ivanishcheva IA et al (2017) Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim Acta 230:479–491CrossRef
12.
go back to reference Cheng Y, Ni X, Feng K et al (2016) Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J Power Sources 326:203–210CrossRef Cheng Y, Ni X, Feng K et al (2016) Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J Power Sources 326:203–210CrossRef
13.
go back to reference He W, Wei C, Zhang X et al (2016) Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochim Acta 219:682–692CrossRef He W, Wei C, Zhang X et al (2016) Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochim Acta 219:682–692CrossRef
14.
go back to reference Xiong F, Tan S, Wei Q et al (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352CrossRef Xiong F, Tan S, Wei Q et al (2017) Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. Nano Energy 32:347–352CrossRef
15.
go back to reference Zhang L-L, Li Z, Yang X-L et al (2017) Binder-free Li3V2(PO4)3/C membrane electrode supported on 3D nitrogen-doped carbon fibers for high-performance lithium-ion batteries. Nano Energy 34:111–119CrossRef Zhang L-L, Li Z, Yang X-L et al (2017) Binder-free Li3V2(PO4)3/C membrane electrode supported on 3D nitrogen-doped carbon fibers for high-performance lithium-ion batteries. Nano Energy 34:111–119CrossRef
16.
go back to reference Yan H, Zhang G, Li Y (2017) Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries. Appl Surf Sci 393:30–36CrossRef Yan H, Zhang G, Li Y (2017) Synthesis and characterization of advanced Li3V2(PO4)3 nanocrystals@conducting polymer PEDOT for high energy lithium-ion batteries. Appl Surf Sci 393:30–36CrossRef
17.
go back to reference Chen Y, Zhao Y, An X et al (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54:5844–5850CrossRef Chen Y, Zhao Y, An X et al (2009) Preparation and electrochemical performance studies on Cr-doped Li3V2(PO4)3 as cathode materials for lithium-ion batteries. Electrochim Acta 54:5844–5850CrossRef
18.
go back to reference Yang Y, Xu W, Guo R et al (2014) Synthesis and electrochemical properties of Zn-doped, carbon coated lithium vanadium phosphate cathode materials for lithium-ion batteries. J Power Sources 269:15–23CrossRef Yang Y, Xu W, Guo R et al (2014) Synthesis and electrochemical properties of Zn-doped, carbon coated lithium vanadium phosphate cathode materials for lithium-ion batteries. J Power Sources 269:15–23CrossRef
19.
go back to reference Sun H-B, Zhou Y-X, Zhang L-L et al (2017) Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries. Phys Chem Chem Phys 19:5155–5162CrossRef Sun H-B, Zhou Y-X, Zhang L-L et al (2017) Investigations on Zr incorporation into Li3V2(PO4)3/C cathode materials for lithium ion batteries. Phys Chem Chem Phys 19:5155–5162CrossRef
20.
go back to reference Liang S, Tan Q, Xiong W et al (2016) Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Sci Rep 6:33682CrossRef Liang S, Tan Q, Xiong W et al (2016) Carbon wrapped hierarchical Li3V2(PO4)3 microspheres for high performance lithium ion batteries. Sci Rep 6:33682CrossRef
21.
go back to reference Mao W, Fu Y, Zhao H et al (2015) Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl Mater Interfaces 7:12057–12066CrossRef Mao W, Fu Y, Zhao H et al (2015) Rational design and facial synthesis of Li3V2(PO4)3@C nanocomposites using carbon with different dimensions for ultrahigh-rate lithium-ion batteries. ACS Appl Mater Interfaces 7:12057–12066CrossRef
22.
go back to reference Liang S, Hu J, Zhang Y et al (2016) Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. J Alloys Compd 683:178–185CrossRef Liang S, Hu J, Zhang Y et al (2016) Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. J Alloys Compd 683:178–185CrossRef
23.
go back to reference Kalluri S, Yoon M, Jo M, et al (2017) Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv Mater 1605807 Kalluri S, Yoon M, Jo M, et al (2017) Feasibility of cathode surface coating technology for high-energy lithium-ion and beyond-lithium-ion batteries. Adv Mater 1605807
24.
go back to reference Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217CrossRef Li H, Zhou H (2012) Enhancing the performances of Li-ion batteries by carbon-coating: present and future. Chem Commun 48:1201–1217CrossRef
25.
go back to reference Yang Y, Guo R, Cai G et al (2014) Preparation and electrochemical properties of ceria coated Li3V2(PO4)3/C cathode materials for lithium-ion batteries. J Electrochem Soc 161:A2153–A2159CrossRef Yang Y, Guo R, Cai G et al (2014) Preparation and electrochemical properties of ceria coated Li3V2(PO4)3/C cathode materials for lithium-ion batteries. J Electrochem Soc 161:A2153–A2159CrossRef
26.
go back to reference An J, Liu C, Guo R et al (2012) Ti3SiC2 modified LiFePO4/C cathode materials with improved electrochemical performance. J Electrochem Soc 159:A2038–A2042CrossRef An J, Liu C, Guo R et al (2012) Ti3SiC2 modified LiFePO4/C cathode materials with improved electrochemical performance. J Electrochem Soc 159:A2038–A2042CrossRef
27.
go back to reference Sun D, Wu C, Guo R et al (2017) Enhanced low temperature electrochemical properties of Li3V2(PO4)3/C modified by a mixed conductive network of Ti3SiC2 and C. Ceram Int 43:2791–2800CrossRef Sun D, Wu C, Guo R et al (2017) Enhanced low temperature electrochemical properties of Li3V2(PO4)3/C modified by a mixed conductive network of Ti3SiC2 and C. Ceram Int 43:2791–2800CrossRef
28.
go back to reference Zhang L-L, Liang G, Peng G et al (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408CrossRef Zhang L-L, Liang G, Peng G et al (2012) Significantly improved electrochemical performance in Li3V2(PO4)3/C promoted by SiO2 coating for lithium-ion batteries. J Phys Chem C 116:12401–12408CrossRef
29.
go back to reference Cai G, Guo R, Liu L et al (2015) Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2. J Power Sources 288:136–144CrossRef Cai G, Guo R, Liu L et al (2015) Enhanced low temperature electrochemical performances of LiFePO4/C by surface modification with Ti3SiC2. J Power Sources 288:136–144CrossRef
30.
go back to reference Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223CrossRef Lee HY, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223CrossRef
31.
go back to reference Esmaeilbeig MA, Movahedirad S (2017) Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: a comparative study of two force fields. Korean J Chem Eng 34:977–986CrossRef Esmaeilbeig MA, Movahedirad S (2017) Prediction of the self-diffusion coefficients in aqueous KCl solution using molecular dynamics: a comparative study of two force fields. Korean J Chem Eng 34:977–986CrossRef
32.
go back to reference Ziolkowska D, Korona KP, Hamankiewicz B et al (2013) The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim Acta 108:532–539CrossRef Ziolkowska D, Korona KP, Hamankiewicz B et al (2013) The role of SnO2 surface coating on the electrochemical performance of LiFePO4 cathode materials. Electrochim Acta 108:532–539CrossRef
33.
go back to reference Zhang C, Shen L, Li H et al (2016) Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. J Electroanal Chem 762:1–6CrossRef Zhang C, Shen L, Li H et al (2016) Enhanced electrochemical properties of MgF2 and C co-coated Li3V2(PO4)3 composite for Li-ion batteries. J Electroanal Chem 762:1–6CrossRef
34.
go back to reference Xu W, Liu L, Guo H et al (2013) Synthesis and electrochemical properties of Li3V2(PO4)3/C cathode material with an improved sol–gel method by changing pH value. Electrochim Acta 113:497–504CrossRef Xu W, Liu L, Guo H et al (2013) Synthesis and electrochemical properties of Li3V2(PO4)3/C cathode material with an improved sol–gel method by changing pH value. Electrochim Acta 113:497–504CrossRef
35.
go back to reference Huang S-Z, Cai Y, Jin J et al (2016) Unique walnut-shaped porous MnO2/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. J Mater Chem A 4:4264–4272CrossRef Huang S-Z, Cai Y, Jin J et al (2016) Unique walnut-shaped porous MnO2/C nanospheres with enhanced reaction kinetics for lithium storage with high capacity and superior rate capability. J Mater Chem A 4:4264–4272CrossRef
36.
go back to reference Lai C, Wei J, Wang Z et al (2015) Li3V2(PO4)3/(SiO2 + C) composite with better stability and electrochemical properties for lithium-ion batteries. Solid State Ion 272:121–126CrossRef Lai C, Wei J, Wang Z et al (2015) Li3V2(PO4)3/(SiO2 + C) composite with better stability and electrochemical properties for lithium-ion batteries. Solid State Ion 272:121–126CrossRef
37.
go back to reference Zhou J, Sun X, Wang K (2016) Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries. Ceram Int 42:10228–10236CrossRef Zhou J, Sun X, Wang K (2016) Preparation of high-voltage Li3V2(PO4)3 co-coated by carbon and Li7La3Zr2O12 as a stable cathode for lithium-ion batteries. Ceram Int 42:10228–10236CrossRef
38.
go back to reference Ferrari S, Lavall RL, Capsoni D et al (2010) Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J Phys Chem C 114:12598–12603CrossRef Ferrari S, Lavall RL, Capsoni D et al (2010) Influence of particle size and crystal orientation on the electrochemical behavior of carbon-coated LiFePO4. J Phys Chem C 114:12598–12603CrossRef
39.
go back to reference Rui XH, Li C, Liu J et al (2010) The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochim Acta 55:6761–6767CrossRef Rui XH, Li C, Liu J et al (2010) The Li3V2(PO4)3/C composites with high-rate capability prepared by a maltose-based sol-gel route. Electrochim Acta 55:6761–6767CrossRef
40.
go back to reference Zhang R, Zhang Y, Zhu K et al (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:12523–12530CrossRef Zhang R, Zhang Y, Zhu K et al (2014) Carbon and RuO2 binary surface coating for the Li3V2(PO4)3 cathode material for lithium-ion batteries. ACS Appl Mater Interfaces 6:12523–12530CrossRef
41.
go back to reference Cao X, Pan A, Zhang Y et al (2016) Nanorod-nanoflake interconnected LiMnPO4·Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 8:27632–27641CrossRef Cao X, Pan A, Zhang Y et al (2016) Nanorod-nanoflake interconnected LiMnPO4·Li3V2(PO4)3/C composite for high-rate and long-life lithium-ion batteries. ACS Appl Mater Interfaces 8:27632–27641CrossRef
42.
go back to reference Han H, Qiu F, Liu Z, Han X (2015) ZrO2-coated Li3V2(PO4)3/C nanocomposite: a high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance. Ceram Int 41:8779–8784CrossRef Han H, Qiu F, Liu Z, Han X (2015) ZrO2-coated Li3V2(PO4)3/C nanocomposite: a high-voltage cathode for rechargeable lithium-ion batteries with remarkable cycling performance. Ceram Int 41:8779–8784CrossRef
43.
go back to reference Zhang X, Kühnel R-S, Hu H et al (2015) Going nano with protic ionic liquids—the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 12:207–214CrossRef Zhang X, Kühnel R-S, Hu H et al (2015) Going nano with protic ionic liquids—the synthesis of carbon coated Li3V2(PO4)3 nanoparticles encapsulated in a carbon matrix for high power lithium-ion batteries. Nano Energy 12:207–214CrossRef
44.
go back to reference Wu Z-S, Ren W, Xu L et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef Wu Z-S, Ren W, Xu L et al (2011) Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries. ACS Nano 5:5463–5471CrossRef
45.
go back to reference Chang K, Geng D, Li X et al (2013) Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater 3:839–844CrossRef Chang K, Geng D, Li X et al (2013) Ultrathin MoS2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv Energy Mater 3:839–844CrossRef
46.
go back to reference Rajagopalan R, Zhang L, Dou SX, Liu H (2016) Lyophilized 3D lithium vanadium phosphate/reduced graphene oxide electrodes for super stable lithium ion batteries. Adv Energy Mater 6:1501760CrossRef Rajagopalan R, Zhang L, Dou SX, Liu H (2016) Lyophilized 3D lithium vanadium phosphate/reduced graphene oxide electrodes for super stable lithium ion batteries. Adv Energy Mater 6:1501760CrossRef
47.
go back to reference Wu C, Guo R, Cai G et al (2016) Ti3SiC2 modified Li3V2(PO4)3/C cathode materials with simultaneous improvement of electronic and ionic conductivities for lithium ion batteries. J Power Sources 306:779–790CrossRef Wu C, Guo R, Cai G et al (2016) Ti3SiC2 modified Li3V2(PO4)3/C cathode materials with simultaneous improvement of electronic and ionic conductivities for lithium ion batteries. J Power Sources 306:779–790CrossRef
48.
go back to reference Wang Z, He W, Zhang X et al (2017) 3D porous Li3V2(PO4)3/hard carbon composites for improving the rate performance of lithium ion batteries. RSC Adv 7:21848–21855CrossRef Wang Z, He W, Zhang X et al (2017) 3D porous Li3V2(PO4)3/hard carbon composites for improving the rate performance of lithium ion batteries. RSC Adv 7:21848–21855CrossRef
49.
go back to reference Ryu I, Kim G, Yoon H et al (2016) Hierarchically nanostructured MnO2 electrodes for pseudocapacitor application. RSC Adv 6:102814–102820CrossRef Ryu I, Kim G, Yoon H et al (2016) Hierarchically nanostructured MnO2 electrodes for pseudocapacitor application. RSC Adv 6:102814–102820CrossRef
50.
go back to reference Chen S, Chen L, Li Y et al (2017) Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl Mater Interfaces 9:8641–8648CrossRef Chen S, Chen L, Li Y et al (2017) Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl Mater Interfaces 9:8641–8648CrossRef
51.
go back to reference Kou J, Chen L, Su Y et al (2015) Role of cobalt content in improving the low-temperature performance of layered lithium-rich cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 7:17910–17918CrossRef Kou J, Chen L, Su Y et al (2015) Role of cobalt content in improving the low-temperature performance of layered lithium-rich cathode materials for lithium-ion batteries. ACS Appl Mater Interfaces 7:17910–17918CrossRef
Metadata
Title
Amorphous MnO2-modified Li3V2(PO4)3/C as high-performance cathode for LIBs: the double effects of surface coating
Authors
Baoyu Wang
Dandan Sun
Ruisong Guo
Zhichao Liu
Leichao Meng
Mei Zheng
Fuyun Li
Tingting Li
Yani Luo
Hong Jiang
Publication date
12-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1690-5

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners