Skip to main content
Top
Published in: Journal of Materials Science 4/2018

19-10-2017 | Metals

Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision

Authors: Aram Shirinyan, Gerhard Wilde, Yuriy Bilogorodskyy

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Interface contributions as well as size confinement effects need to be taken into account into the description of phase equilibria and phase transformations in nanoscale systems. Here, a modified Gibbsian thermodynamic approach has been suggested to describe the solidification of a nano-sized liquid alloy droplet and the equilibrium states in the two-phase region of the phase diagram. Cu–Ni has been chosen as a model system due to the availability of thermodynamic data. This description shows for the first time the occurrence of solidification loops at the size-dependent temperature–composition phase diagram for the isolated Cu–Ni nano-droplet, showing two-phase equilibrium states for droplet radii of 25 and 40 nm, i.e. well within the size domain of nanoparticles that are, for example, used for applications in additive manufacturing. Furthermore, the current results show quantitatively that these equilibrium loops that are specific for the nano-sized systems do not coincide with the solubility curve. It leads to the new “solidification loop” concept concerning the phase diagram introduced in the paper. The isolated liquid Cu–Ni nanoscale droplet can actually crystallize along different trajectories, whereas the dominant transition type is comparable to homogeneous nucleation that proceeds from the inner part of the droplet towards the surface: the newly formed phase after initial nucleation is a Ni-rich crystal with a Cu-rich liquid shell. The decrease in the nanoparticle size causes the decrease in the solidification temperature and the temperature width of the phase transition, the increase in the solubility limit and the concentration width of the solidification loop as well as a change in the shape and slope of the equilibrium curves of the two-phase region of the phase diagram. For larger droplets, the size-dependent phase diagram approaches the well-known bulk phase diagram.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chen M, Wu B, Yang J, Zheng NF (2012) Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater 24:862–879CrossRef Chen M, Wu B, Yang J, Zheng NF (2012) Small adsorbate-assisted shape control of Pd and Pt nanocrystals. Adv Mater 24:862–879CrossRef
2.
go back to reference Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale 3:5120–5125CrossRef Banerjee M, Sharma S, Chattopadhyay A, Ghosh SS (2011) Enhanced antibacterial activity of bimetallic gold-silver core-shell nanoparticles at low silver concentration. Nanoscale 3:5120–5125CrossRef
3.
go back to reference Duncan H, Lasia A (2008) Hydrogen adsorption/absorption on Pd/Pt (111) multilayers. J Electroanal Chem 621:62–68CrossRef Duncan H, Lasia A (2008) Hydrogen adsorption/absorption on Pd/Pt (111) multilayers. J Electroanal Chem 621:62–68CrossRef
4.
go back to reference Pena RO, Pal U (2011) Au@Ag core-shell nanoparticles: efficient all-plasmonic fano-resonance generators. Nanoscale 3:3609–3612CrossRef Pena RO, Pal U (2011) Au@Ag core-shell nanoparticles: efficient all-plasmonic fano-resonance generators. Nanoscale 3:3609–3612CrossRef
5.
go back to reference Chng TT, Polavarapu L, Xu QH, Ji W, Zeng HC (2011) Rapid synthesis of highly monodisperse AuxAg1-x alloy nanoparticles via a half-seeding approach. Langmuir 27:5633–5643CrossRef Chng TT, Polavarapu L, Xu QH, Ji W, Zeng HC (2011) Rapid synthesis of highly monodisperse AuxAg1-x alloy nanoparticles via a half-seeding approach. Langmuir 27:5633–5643CrossRef
6.
go back to reference Zhang H, Son J, Jang J, Lee JS, Ong W-L, Malen JA, Talapin DV (2013) Bi1-xSbx alloy nanocrystals: colloidal synthesis, charge transport, and thermoelectric properties. ACS Nano 7:10296–10306CrossRef Zhang H, Son J, Jang J, Lee JS, Ong W-L, Malen JA, Talapin DV (2013) Bi1-xSbx alloy nanocrystals: colloidal synthesis, charge transport, and thermoelectric properties. ACS Nano 7:10296–10306CrossRef
7.
go back to reference Gong J, Lee C-S, Chang YY, Chang YS (2014) A novel selfassembling nanoparticle of Ag/Bi with high reactive efficiency. Chem Commun 50:8597–8600CrossRef Gong J, Lee C-S, Chang YY, Chang YS (2014) A novel selfassembling nanoparticle of Ag/Bi with high reactive efficiency. Chem Commun 50:8597–8600CrossRef
8.
go back to reference Rastogi PK, Ganesan V, Krishnamoorthi S (2014) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2:933–943CrossRef Rastogi PK, Ganesan V, Krishnamoorthi S (2014) A promising electrochemical sensing platform based on a silver nanoparticles decorated copolymer for sensitive nitrite determination. J Mater Chem A 2:933–943CrossRef
9.
go back to reference Wilde G, Bunzel P, Roesner H, Weissmuller J (2007) Phase equilibria and phase diagrams of nanoscaled systems. J Alloy Compd 434–435:286–289CrossRef Wilde G, Bunzel P, Roesner H, Weissmuller J (2007) Phase equilibria and phase diagrams of nanoscaled systems. J Alloy Compd 434–435:286–289CrossRef
10.
go back to reference Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold–copper nano-alloy “Tumbaga” in the Era of Nano: phase diagram and segregation. Nano Lett 14:6718–6726CrossRef Guisbiers G, Mejia-Rosales S, Khanal S, Ruiz-Zepeda F, Whetten RL, José-Yacaman M (2014) Gold–copper nano-alloy “Tumbaga” in the Era of Nano: phase diagram and segregation. Nano Lett 14:6718–6726CrossRef
11.
go back to reference Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:438–442CrossRef Liang LH, Liu D, Jiang Q (2003) Size-dependent continuous binary solution phase diagram. Nanotechnology 14:438–442CrossRef
12.
go back to reference Kim BJ, Tersoff J, Wen CY, Reuter MC, Stach EA, Ross FM (2009) Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys Rev Lett 103:155701–155704CrossRef Kim BJ, Tersoff J, Wen CY, Reuter MC, Stach EA, Ross FM (2009) Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. Phys Rev Lett 103:155701–155704CrossRef
13.
go back to reference Park J, Lee J (2008) Phase diagram reassessment of Ag–Au system including size effect. CALPHAD 32:135–141CrossRef Park J, Lee J (2008) Phase diagram reassessment of Ag–Au system including size effect. CALPHAD 32:135–141CrossRef
14.
go back to reference Liu XJ, Wang CP, Jiang JZ, Ohnuma I, Kainuma R, Ishida K (2005) Thermodynamic calculation of phase diagram and phase stability with nano-size particle. Int J Mod Phys B 19:2645–2650CrossRef Liu XJ, Wang CP, Jiang JZ, Ohnuma I, Kainuma R, Ishida K (2005) Thermodynamic calculation of phase diagram and phase stability with nano-size particle. Int J Mod Phys B 19:2645–2650CrossRef
15.
go back to reference Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92:1236–1241 Tanaka T, Hara S (2001) Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z Metallkd 92:1236–1241
16.
go back to reference Wautelet M (1992) Effects of size shape and environment on the phase diagrams of small structures. Nanotechnology 3:42–43CrossRef Wautelet M (1992) Effects of size shape and environment on the phase diagrams of small structures. Nanotechnology 3:42–43CrossRef
17.
go back to reference Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159CrossRef Sun CQ (2007) Size dependence of nanostructures: impact of bond order deficiency. Prog Solid State Chem 35:1–159CrossRef
18.
go back to reference Jartych E, Zurawicz JK, Oleszak D, Pekala M (1999) Magnetic properties and structure of nanocrystalline Fe–Al and Fe–Ni alloys. Nanostr Mater 12:927–930CrossRef Jartych E, Zurawicz JK, Oleszak D, Pekala M (1999) Magnetic properties and structure of nanocrystalline Fe–Al and Fe–Ni alloys. Nanostr Mater 12:927–930CrossRef
19.
go back to reference Jo C, Lee J, Jang Y (2005) Electronic and magnetic properties of ultrathin Fe–Co alloy nanowires. Chem Mater 17:2667–2671CrossRef Jo C, Lee J, Jang Y (2005) Electronic and magnetic properties of ultrathin Fe–Co alloy nanowires. Chem Mater 17:2667–2671CrossRef
20.
go back to reference James P, Eriksson O, Johansson B, Abrikosov IA (1999) Calculated magnetic properties of binary alloys between Fe Co Ni and Cu. Phys Rev B 59:419–430CrossRef James P, Eriksson O, Johansson B, Abrikosov IA (1999) Calculated magnetic properties of binary alloys between Fe Co Ni and Cu. Phys Rev B 59:419–430CrossRef
21.
go back to reference Kim DK, Kan D, Veres T, Normadin F, Liao JK, Kim HH, Lee SH, Zahn M, Muhammed M (2005) Monodispersed Fe–Pt nanoparticles for biomedical applications. J Appl Phys 97:10Q918(1)–10Q918(3) Kim DK, Kan D, Veres T, Normadin F, Liao JK, Kim HH, Lee SH, Zahn M, Muhammed M (2005) Monodispersed Fe–Pt nanoparticles for biomedical applications. J Appl Phys 97:10Q918(1)–10Q918(3)
22.
go back to reference Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17:4617–4621CrossRef Hong R, Fischer NO, Emrick T, Rotello VM (2005) Surface PEGylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem Mater 17:4617–4621CrossRef
23.
go back to reference Bonnemann H, Richards RM (2001) Nanoscopic metal particles: synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480CrossRef Bonnemann H, Richards RM (2001) Nanoscopic metal particles: synthetic methods and potential applications. Eur J Inorg Chem 10:2455–2480CrossRef
24.
go back to reference Agrawal VV, Mahalakshmi P, Kulkarni GU, Rao CNR (2006) Nanocrystalline films of Au–Ag Au–Cu and Au–Ag–Cu alloys formed at the organic–aqueous interface. Langmuir 22:1846–1851CrossRef Agrawal VV, Mahalakshmi P, Kulkarni GU, Rao CNR (2006) Nanocrystalline films of Au–Ag Au–Cu and Au–Ag–Cu alloys formed at the organic–aqueous interface. Langmuir 22:1846–1851CrossRef
25.
go back to reference Liu C, Wu X, Klemmer T, Shukla N, Weller D, Roy AG, Tanase M, Laughlin D (2005) Reduction of sintering during annealing of Fe–Pt nanoparticles coated with iron oxide. Chem Mater 17:620–625CrossRef Liu C, Wu X, Klemmer T, Shukla N, Weller D, Roy AG, Tanase M, Laughlin D (2005) Reduction of sintering during annealing of Fe–Pt nanoparticles coated with iron oxide. Chem Mater 17:620–625CrossRef
26.
go back to reference Botcharova E, Freudenberger J, Schultz L (2004) Cu–Nb alloys prepared by mechanical alloying and subsequent heat treatment. J Alloys Compd 365:157–163CrossRef Botcharova E, Freudenberger J, Schultz L (2004) Cu–Nb alloys prepared by mechanical alloying and subsequent heat treatment. J Alloys Compd 365:157–163CrossRef
27.
go back to reference Liu QX, Wang CX, Zhang W, Wang GW (2003) Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction. Chem Phys Lett 382:1–5CrossRef Liu QX, Wang CX, Zhang W, Wang GW (2003) Immiscible silver–nickel alloying nanorods growth upon pulsed-laser induced liquid/solid interfacial reaction. Chem Phys Lett 382:1–5CrossRef
28.
go back to reference Wu ML, Chen DH, Huang TC (2001) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883CrossRef Wu ML, Chen DH, Huang TC (2001) Synthesis of Au/Pd bimetallic nanoparticles in reverse micelles. Langmuir 17:3877–3883CrossRef
29.
go back to reference Liu S, Sun Z, Liu Q, Wu L, Huang Y, Yao T, Zhang J, Hu T, Ge M, Hu F, Xie Z, Pan G, Wei S (2014) Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 8:1886–1892CrossRef Liu S, Sun Z, Liu Q, Wu L, Huang Y, Yao T, Zhang J, Hu T, Ge M, Hu F, Xie Z, Pan G, Wei S (2014) Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles. ACS Nano 8:1886–1892CrossRef
30.
go back to reference Li M, Kuribayashi K (2006) Free solidification of undercooled eutectics. Mater Trans 47:2889–2897CrossRef Li M, Kuribayashi K (2006) Free solidification of undercooled eutectics. Mater Trans 47:2889–2897CrossRef
31.
go back to reference Hill TH (2001) A different approach to nanothermodynamics. NanoLetters 1(1):273–275CrossRef Hill TH (2001) A different approach to nanothermodynamics. NanoLetters 1(1):273–275CrossRef
32.
go back to reference Rusanov AI (2012) The development of the fundamental concepts of surface thermodynamics. Colloid J 74(2):136–153CrossRef Rusanov AI (2012) The development of the fundamental concepts of surface thermodynamics. Colloid J 74(2):136–153CrossRef
33.
go back to reference Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(6):481–483CrossRef Couchman PR, Jesser WA (1977) Thermodynamic theory of size dependence of melting temperature in metals. Nature 269(6):481–483CrossRef
34.
go back to reference Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic thermodynamic and kinetic effects. Rev Mod Phys 77:371–423CrossRef Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic thermodynamic and kinetic effects. Rev Mod Phys 77:371–423CrossRef
35.
go back to reference Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607CrossRef Kaptay G, Janczak-Rusch J, Pigozzi G, Jeurgens LPH (2014) Theoretical analysis of melting point depression of pure metals in different initial configurations. J Mater Eng Perform 23:1600–1607CrossRef
36.
go back to reference Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262CrossRef Mei QS, Lu K (2007) Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog Mater Sci 52:1175–1262CrossRef
37.
go back to reference Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRef Buffat P, Borel J-P (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRef
38.
go back to reference Nielsen OH, Sethna JP, Stoltze P, Jacobsen KW, Norskov JK (1994) Melting a copper cluster: critical-Droplet theory. Europhys Lett 26:51–56CrossRef Nielsen OH, Sethna JP, Stoltze P, Jacobsen KW, Norskov JK (1994) Melting a copper cluster: critical-Droplet theory. Europhys Lett 26:51–56CrossRef
39.
go back to reference Luedtke CC, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077CrossRef Luedtke CC, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077CrossRef
40.
go back to reference Weissmueller J, Bunzel P, Wilde G (2004) Two-phase equilibrium in small alloy particles. Scr Mater 51:813–818CrossRef Weissmueller J, Bunzel P, Wilde G (2004) Two-phase equilibrium in small alloy particles. Scr Mater 51:813–818CrossRef
41.
go back to reference Shirinyan A (2015) Concept of size-dependent atomic interaction energies for solid nanomaterials: thermodynamic and diffusion aspects. Metallofiz Noveishie Tekhnol 37:475–486CrossRef Shirinyan A (2015) Concept of size-dependent atomic interaction energies for solid nanomaterials: thermodynamic and diffusion aspects. Metallofiz Noveishie Tekhnol 37:475–486CrossRef
42.
go back to reference Shirinyan A, Bilogorodskyy Yu (2012) Atom-atom interactions in continuous metallic nanofilms. Phys Met Metall 13:823–830CrossRef Shirinyan A, Bilogorodskyy Yu (2012) Atom-atom interactions in continuous metallic nanofilms. Phys Met Metall 13:823–830CrossRef
43.
go back to reference Shirinyan A, Bilogorodskyy Yu (2010) Phase diagram construction of continuous Bi–Sn nanofilms due to the model of dependence of atomic interaction energies from the size of a system. Met Phys Adv Technol 32:1493–1508 Shirinyan A, Bilogorodskyy Yu (2010) Phase diagram construction of continuous Bi–Sn nanofilms due to the model of dependence of atomic interaction energies from the size of a system. Met Phys Adv Technol 32:1493–1508
44.
go back to reference Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851–855CrossRef Qi WH, Wang MP, Zhou M, Shen XQ, Zhang XF (2006) Modeling cohesive energy and melting temperature of nanocrystals. J Phys Chem Solids 67:851–855CrossRef
45.
go back to reference Safaei A (2011) Cohesive energy and physical properties of nanocrystals. Philos Mag 91:1509–1539CrossRef Safaei A (2011) Cohesive energy and physical properties of nanocrystals. Philos Mag 91:1509–1539CrossRef
46.
go back to reference Xiong SY, Qi WH, Cheng YJ, Huang BY, Wang MP, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticle. J Phys Chem Chem Phys 13:10648–10651CrossRef Xiong SY, Qi WH, Cheng YJ, Huang BY, Wang MP, Li Y (2011) Universal relation for size dependent thermodynamic properties of metallic nanoparticle. J Phys Chem Chem Phys 13:10648–10651CrossRef
47.
go back to reference Jiang Q, Yang C (2008) Size effect on the phase stability of nanostructures. Curr Nanosci 4:179–200CrossRef Jiang Q, Yang C (2008) Size effect on the phase stability of nanostructures. Curr Nanosci 4:179–200CrossRef
48.
go back to reference Guisbiers G, Mendoza-Cruz R, Bazán-Díaz L, Velázquez-Salazar JJ, Mendoza-Perez R, Robledo-Torres JA, Rodriguez-Lopez J-L, Montejano-Carrizales JM, Whetten RL, José-Yacamán M (2016) Electrum, the gold−silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10:188–298CrossRef Guisbiers G, Mendoza-Cruz R, Bazán-Díaz L, Velázquez-Salazar JJ, Mendoza-Perez R, Robledo-Torres JA, Rodriguez-Lopez J-L, Montejano-Carrizales JM, Whetten RL, José-Yacamán M (2016) Electrum, the gold−silver alloy, from the bulk scale to the nanoscale: synthesis, properties, and segregation rules. ACS Nano 10:188–298CrossRef
49.
50.
go back to reference Li Y, Qi W, Huang B, Ji W, Wang M (2013) Size- and composition-dependent structural stability of core−shell and alloy Pd−Pt and Au−Ag nanoparticles. J Phys Chem C 117(29):15394–15401CrossRef Li Y, Qi W, Huang B, Ji W, Wang M (2013) Size- and composition-dependent structural stability of core−shell and alloy Pd−Pt and Au−Ag nanoparticles. J Phys Chem C 117(29):15394–15401CrossRef
51.
go back to reference Huang R, Wen YH, Zhu ZZ, Sun SG (2012) Two-stage melting in core–shell nanoparticles: an atomic-scale perspective. J Phys Chem C 116:11837–11841CrossRef Huang R, Wen YH, Zhu ZZ, Sun SG (2012) Two-stage melting in core–shell nanoparticles: an atomic-scale perspective. J Phys Chem C 116:11837–11841CrossRef
52.
go back to reference Ruiz-Ruiz VF, Zumeta-Dubé I, Díaz D, Arellano-Jiménez MJ, José-Yacaman M (2017) Can silver Be alloyed with bismuth on nanoscale? An optical and structural approach. J Phys Chem C 12:940–949CrossRef Ruiz-Ruiz VF, Zumeta-Dubé I, Díaz D, Arellano-Jiménez MJ, José-Yacaman M (2017) Can silver Be alloyed with bismuth on nanoscale? An optical and structural approach. J Phys Chem C 12:940–949CrossRef
53.
go back to reference Ferrando R (2016) Chapter 4—theoretical and computational methods for nanoalloy structure and thermodynamics. Front Nanosc 10:75–129CrossRef Ferrando R (2016) Chapter 4—theoretical and computational methods for nanoalloy structure and thermodynamics. Front Nanosc 10:75–129CrossRef
54.
go back to reference Oumellal Y, Joubert JM, Ghimbeu CM, Le Meins JM, Bourgona J, Zlotea C (2016) Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition. Nano Struct Nano Objects 7:92–100CrossRef Oumellal Y, Joubert JM, Ghimbeu CM, Le Meins JM, Bourgona J, Zlotea C (2016) Synthesis and stability of Pd–Rh nanoalloys with fully tunable particle size and composition. Nano Struct Nano Objects 7:92–100CrossRef
55.
go back to reference Atanasov I, Ferrando R, Johnston RL (2014) Structure and solid solution properties of Cu–Ag nanoalloys. J Phys Condens Mat 26:275301-1–275301-8CrossRef Atanasov I, Ferrando R, Johnston RL (2014) Structure and solid solution properties of Cu–Ag nanoalloys. J Phys Condens Mat 26:275301-1–275301-8CrossRef
56.
go back to reference Ahmadi M, Behafarid F, Cui CH, Strasser P, Cuenya BR (2013) Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. ACS Nano 7:9195–9204CrossRef Ahmadi M, Behafarid F, Cui CH, Strasser P, Cuenya BR (2013) Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. ACS Nano 7:9195–9204CrossRef
57.
go back to reference Toaia TJ, Rossia G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58CrossRef Toaia TJ, Rossia G, Ferrando R (2008) Global optimisation and growth simulation of AuCu clusters. Faraday Discuss 138:49–58CrossRef
58.
go back to reference Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRef Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910CrossRef
59.
go back to reference Guisbiers G, Mendoza-Pérez R, Bazán-Díaz L, Mendoza-Cruz R, Jesús Velázquez-Salazar J, José-Yacamán M (2017) Size and Shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J Phys Chem C 121:6930–6939CrossRef Guisbiers G, Mendoza-Pérez R, Bazán-Díaz L, Mendoza-Cruz R, Jesús Velázquez-Salazar J, José-Yacamán M (2017) Size and Shape effects on the phase diagrams of nickel-based bimetallic nanoalloys. J Phys Chem C 121:6930–6939CrossRef
60.
go back to reference Liao H, Fisher A, Xu ZJ (2015) Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 11:3221–3246CrossRef Liao H, Fisher A, Xu ZJ (2015) Surface segregation in bimetallic nanoparticles: a critical issue in electrocatalyst engineering. Small 11:3221–3246CrossRef
61.
go back to reference Wang GF, Van Hove MA, Ross PN, Baskes MI (2005) Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo). Prog Surf Sci 79:28–45 Wang GF, Van Hove MA, Ross PN, Baskes MI (2005) Quantitative prediction of surface segregation in bimetallic Pt–M alloy nanoparticles (M = Ni, Re, Mo). Prog Surf Sci 79:28–45
62.
go back to reference Wang KW, Chung SR, Liu CW (2008) Surface segregation of PdxNi100-X alloy nanoparticles. J Phys Chem C 11:10242–10246CrossRef Wang KW, Chung SR, Liu CW (2008) Surface segregation of PdxNi100-X alloy nanoparticles. J Phys Chem C 11:10242–10246CrossRef
63.
go back to reference Schamp CT, Jesser WA (2006) Two-phase equilibrium in individual nanoparticles of Bi–Sn. Metall Mater Trans A 37a:1825–1829CrossRef Schamp CT, Jesser WA (2006) Two-phase equilibrium in individual nanoparticles of Bi–Sn. Metall Mater Trans A 37a:1825–1829CrossRef
64.
go back to reference Palatnik LS, Boiko BT (1961) On the state diagram of aluminum–copper alloys in thin films. Phys Met Metall 11:119–122 Palatnik LS, Boiko BT (1961) On the state diagram of aluminum–copper alloys in thin films. Phys Met Metall 11:119–122
65.
go back to reference Lyman CE, Lakis RE, Stenger HG, Totdal B, Prestvik R (2000) Analysis of alloy nanoparticles. Mikrochim Acta 132:301–308 Lyman CE, Lakis RE, Stenger HG, Totdal B, Prestvik R (2000) Analysis of alloy nanoparticles. Mikrochim Acta 132:301–308
66.
go back to reference Yasuda H, Mori H (2002) Phase diagrams in nanometer-sized alloy systems. J Cryst Growth 237–239:234–238CrossRef Yasuda H, Mori H (2002) Phase diagrams in nanometer-sized alloy systems. J Cryst Growth 237–239:234–238CrossRef
67.
go back to reference Rusanov AI (1978) Phasen gleichgewichte und Grenzflaecheners cheinungen. Akademie-Verlag, Berlin Rusanov AI (1978) Phasen gleichgewichte und Grenzflaecheners cheinungen. Akademie-Verlag, Berlin
68.
go back to reference Ulbricht H, Schmelzer J, Mahnke R, Schweitzer F (1988) Thermodynamics of finite systems and kinetics of first-order phase transitions. BSB Teubner, LeipzigCrossRef Ulbricht H, Schmelzer J, Mahnke R, Schweitzer F (1988) Thermodynamics of finite systems and kinetics of first-order phase transitions. BSB Teubner, LeipzigCrossRef
69.
go back to reference Shirinyan AS, Wautelet M (2004) Phase separation in nanoparticles. Nanotechnology 15:1720–1731CrossRef Shirinyan AS, Wautelet M (2004) Phase separation in nanoparticles. Nanotechnology 15:1720–1731CrossRef
70.
go back to reference Shirinyan AS, Gusak AM (2004) Phase diagrams of decomposing nanoalloys. Philos Mag A 84:579–593CrossRef Shirinyan AS, Gusak AM (2004) Phase diagrams of decomposing nanoalloys. Philos Mag A 84:579–593CrossRef
71.
go back to reference Jesser WA, Shneck RZ, Gille WW (2004) Solid-liquid equilibria in nanoparticles of Pb–Bi alloys. Phys Rev B 69:144113–144121CrossRef Jesser WA, Shneck RZ, Gille WW (2004) Solid-liquid equilibria in nanoparticles of Pb–Bi alloys. Phys Rev B 69:144113–144121CrossRef
72.
go back to reference Shirinyan AS, Gusak AM, Wautelet M (2005) Phase diagram versus diagram of solubility: What is the difference for nanosystems? Acta Mater 53:5025–5032CrossRef Shirinyan AS, Gusak AM, Wautelet M (2005) Phase diagram versus diagram of solubility: What is the difference for nanosystems? Acta Mater 53:5025–5032CrossRef
73.
go back to reference Shirinyan AS (2015) Two-phase equilibrium states in individual Cu–Ni nanoparticles: size depletion and hysteresis effects. Beilstein J Nanotechnol 6:1811–1820CrossRef Shirinyan AS (2015) Two-phase equilibrium states in individual Cu–Ni nanoparticles: size depletion and hysteresis effects. Beilstein J Nanotechnol 6:1811–1820CrossRef
74.
go back to reference Shirinyan A, Wautelet M, Belogorodsky Y (2006) Solubility diagram of Cu–Ni nanosystem. J Phys Condens Matter 18:2537–2551CrossRef Shirinyan A, Wautelet M, Belogorodsky Y (2006) Solubility diagram of Cu–Ni nanosystem. J Phys Condens Matter 18:2537–2551CrossRef
75.
go back to reference Gusak AM, Kovalchuk AO, Straumal BB (2013) Interrelation of depletion and segregation in decomposition of nanoparticles. Philos Mag 93:1677–1689CrossRef Gusak AM, Kovalchuk AO, Straumal BB (2013) Interrelation of depletion and segregation in decomposition of nanoparticles. Philos Mag 93:1677–1689CrossRef
76.
go back to reference Massalski TB (1990) Binary alloy phase diagrams, vol 1–3, 2nd edn. ASM International, Materials Park Massalski TB (1990) Binary alloy phase diagrams, vol 1–3, 2nd edn. ASM International, Materials Park
77.
go back to reference Villar P, Prince A, Okamoto H (1995) Handbook of ternary alloy phase diagrams, vol 1–10. ASM International, Materials Park Villar P, Prince A, Okamoto H (1995) Handbook of ternary alloy phase diagrams, vol 1–10. ASM International, Materials Park
78.
go back to reference Saunders N, Miodownik AP (1998) CALPHAD calculation of phase diagrams: a comprehensive guide pergamon materials series. Elsevier Science Inc, New York Saunders N, Miodownik AP (1998) CALPHAD calculation of phase diagrams: a comprehensive guide pergamon materials series. Elsevier Science Inc, New York
79.
go back to reference Hillert M (2008) Phase equilibria phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New York Hillert M (2008) Phase equilibria phase diagrams and phase transformations: their thermodynamic basis, 2nd edn. Cambridge University Press, New York
80.
go back to reference Campbell CE, Kattner UR, Liu Z-K (2014) The development of phase-based property data using the CALPHAD method and infrastructure needs. Integr Mater Manuf Innov 3:12-1–23CrossRef Campbell CE, Kattner UR, Liu Z-K (2014) The development of phase-based property data using the CALPHAD method and infrastructure needs. Integr Mater Manuf Innov 3:12-1–23CrossRef
81.
go back to reference Steininger J (1970) Thermodynamics and calculation of the liquidus-solidus gap in homogenous monotonic alloy systems. J Appl Phys 41:2713–2724CrossRef Steininger J (1970) Thermodynamics and calculation of the liquidus-solidus gap in homogenous monotonic alloy systems. J Appl Phys 41:2713–2724CrossRef
82.
go back to reference Mey S (1992) Thermodynamic re-assessment of the Cu–Ni system. CALPHAD 16:255–260CrossRef Mey S (1992) Thermodynamic re-assessment of the Cu–Ni system. CALPHAD 16:255–260CrossRef
83.
go back to reference Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque de la Puente J, José-Yacaman M (2014) Cu–Ni nano-alloy: mixed core–shell or Janus nano-particle? Nanoscale 6:14630–14635CrossRef Guisbiers G, Khanal S, Ruiz-Zepeda F, Roque de la Puente J, José-Yacaman M (2014) Cu–Ni nano-alloy: mixed core–shell or Janus nano-particle? Nanoscale 6:14630–14635CrossRef
84.
go back to reference Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD 45:33–39CrossRef Sopousek J, Vrestal J, Pinkas J, Broz P, Bursik J, Styskalik A, Skoda D, Zobac O, Lee J (2014) Cu–Ni nanoalloy phase diagram—prediction and experiment. CALPHAD 45:33–39CrossRef
85.
go back to reference Huang SP, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236CrossRef Huang SP, Balbuena PB (2002) Melting of bimetallic Cu–Ni nanoclusters. J Phys Chem B 106:7225–7236CrossRef
86.
go back to reference Li G, Wang Q, Liu T, Wang K, He J (2010) Molecular dynamics simulation of the melting and coalescence in the mixed Cu–Ni nanoclusters. J Cluster Sci 21:45–55CrossRef Li G, Wang Q, Liu T, Wang K, He J (2010) Molecular dynamics simulation of the melting and coalescence in the mixed Cu–Ni nanoclusters. J Cluster Sci 21:45–55CrossRef
87.
go back to reference Matienseen W, Warlimont H (2005) Springer handbook of condensed matter and materials. Data Springer, BerlinCrossRef Matienseen W, Warlimont H (2005) Springer handbook of condensed matter and materials. Data Springer, BerlinCrossRef
88.
go back to reference Weast RC (1986–1987) CRC handbook of chemistry and physics, 67th edn. CRC Press Inc, Boca Raton Weast RC (1986–1987) CRC handbook of chemistry and physics, 67th edn. CRC Press Inc, Boca Raton
89.
go back to reference Shackelford JF, Alexander W (2001) CRC material science and engineering handbook, 3rd edn. CRC Press, Boca Raton Shackelford JF, Alexander W (2001) CRC material science and engineering handbook, 3rd edn. CRC Press, Boca Raton
90.
go back to reference Smithells CJ, Brandes EA (1976) Metal reference book, 5th edn. Fulmer Research Ltd Butterworth, London Smithells CJ, Brandes EA (1976) Metal reference book, 5th edn. Fulmer Research Ltd Butterworth, London
91.
go back to reference Jiang Q, Lu HM, Zhao M (2004) Modelling of surface energies of elemental crystals. J Phys Condens Matter 16:521–530CrossRef Jiang Q, Lu HM, Zhao M (2004) Modelling of surface energies of elemental crystals. J Phys Condens Matter 16:521–530CrossRef
92.
go back to reference Magomedov MN (2004) Dependence of the surface energy on the size and shape of a nanocrystal. Phys Solid State 46:954–968CrossRef Magomedov MN (2004) Dependence of the surface energy on the size and shape of a nanocrystal. Phys Solid State 46:954–968CrossRef
93.
go back to reference Hashimoto R, Shibuta Y, Suzuki T (2011) Estimation of solid–liquid interfacial energy from Gibbs–Thomson effect: a molecular dynamics study. ISIJ Int 51:1664–1667CrossRef Hashimoto R, Shibuta Y, Suzuki T (2011) Estimation of solid–liquid interfacial energy from Gibbs–Thomson effect: a molecular dynamics study. ISIJ Int 51:1664–1667CrossRef
94.
go back to reference Brillo J, Egry I, Giffard HS, Patti A (2004) Density and thermal expansion of liquid Au–Cu alloys. Int J Thermophys 25:1881–1888CrossRef Brillo J, Egry I, Giffard HS, Patti A (2004) Density and thermal expansion of liquid Au–Cu alloys. Int J Thermophys 25:1881–1888CrossRef
95.
go back to reference Lohoefer G, Brillo J, Egry I (2004) Thermophysical properties of undercooled liquid Cu–Ni alloys. Int J Thermophys 25:1535–1550CrossRef Lohoefer G, Brillo J, Egry I (2004) Thermophysical properties of undercooled liquid Cu–Ni alloys. Int J Thermophys 25:1535–1550CrossRef
96.
go back to reference Feng X, Ren-hui Y, Lan-xiao LF, Hong-kai Z (2008) Densities of molten Ni-(Cr Co W) superalloys. Trans Nonferr Met Soc China 18:24–27CrossRef Feng X, Ren-hui Y, Lan-xiao LF, Hong-kai Z (2008) Densities of molten Ni-(Cr Co W) superalloys. Trans Nonferr Met Soc China 18:24–27CrossRef
97.
go back to reference Feng X, Liang F, Kiyoshi N (2005) Surface tension and molten Ni and Ni–Co alloys. J Mater Sci Technol China 21:201–206 Feng X, Liang F, Kiyoshi N (2005) Surface tension and molten Ni and Ni–Co alloys. J Mater Sci Technol China 21:201–206
98.
go back to reference Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028CrossRef Turnbull D (1950) Formation of crystal nuclei in liquid metals. J Appl Phys 21:1022–1028CrossRef
99.
go back to reference Jian Z, Kuribayashi K, Jie W (2002) Solid–liquid interface energy of metals at melting point and undercooled state. Mater Trans 43:721–726CrossRef Jian Z, Kuribayashi K, Jie W (2002) Solid–liquid interface energy of metals at melting point and undercooled state. Mater Trans 43:721–726CrossRef
100.
go back to reference Tesfaye F, Taskinen P (2010) Densities of molten and solid alloys of (Fe Cu Ni Co-S at elevated temperatures—literature review and analysis. Aalto University Publications in Materials Science and Engineering, Multiprint Oy, Espoo Tesfaye F, Taskinen P (2010) Densities of molten and solid alloys of (Fe Cu Ni Co-S at elevated temperatures—literature review and analysis. Aalto University Publications in Materials Science and Engineering, Multiprint Oy, Espoo
101.
go back to reference Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Limited & ASM International, CambridgeCrossRef Mills KC (2002) Recommended values of thermophysical properties for selected commercial alloys. Woodhead Publishing Limited & ASM International, CambridgeCrossRef
102.
go back to reference Zernike J (1955) Chemical phase theory. Deventer-Antwerp-Djakarta: N. V. Uitgevers-Maatschappij-AE. E. Kluwer Zernike J (1955) Chemical phase theory. Deventer-Antwerp-Djakarta: N. V. Uitgevers-Maatschappij-AE. E. Kluwer
103.
go back to reference Biswas M, Saha A, Dule M, Mandal TK (2014) Polymer-assisted chain-like organization of CuNi alloy nanoparticles: solvent-adoptable pseudohomogeneous catalysts for alkyne–azide click reactions with magnetic recyclability. J Phys Chem C 118:22156–22165CrossRef Biswas M, Saha A, Dule M, Mandal TK (2014) Polymer-assisted chain-like organization of CuNi alloy nanoparticles: solvent-adoptable pseudohomogeneous catalysts for alkyne–azide click reactions with magnetic recyclability. J Phys Chem C 118:22156–22165CrossRef
104.
go back to reference Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA (2003) Carbon capacious Ni–Cu-Al2O3 catalysts for methane decomposition. Appl Catal A 247:51–63CrossRef Reshetenko TV, Avdeeva LB, Ismagilov ZR, Chuvilin AL, Ushakov VA (2003) Carbon capacious Ni–Cu-Al2O3 catalysts for methane decomposition. Appl Catal A 247:51–63CrossRef
105.
go back to reference Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250CrossRef Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250CrossRef
106.
go back to reference Niu HL, Chen QW, Lin YS, Jia JY, Zhu HF, Ning M (2004) Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures. Nanotechnology 15:1054–1058CrossRef Niu HL, Chen QW, Lin YS, Jia JY, Zhu HF, Ning M (2004) Hydrothermal formation of magnetic Ni–Cu alloy nanocrystallites at low temperatures. Nanotechnology 15:1054–1058CrossRef
107.
go back to reference Lee JG, Mori H, Yasuda H (2002) Alloy phase formation in nanometer-sized particles in the In-Sn system. Phys Rev B 65:132106–1–132106–4 Lee JG, Mori H, Yasuda H (2002) Alloy phase formation in nanometer-sized particles in the In-Sn system. Phys Rev B 65:132106–1–132106–4
108.
go back to reference Nam HS, Hwang NM, Yu BD, Yoon JK (2002) Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. Phys Rev Lett 89:275502–1–275502–4CrossRef Nam HS, Hwang NM, Yu BD, Yoon JK (2002) Formation of an icosahedral structure during the freezing of gold nanoclusters: surface-induced mechanism. Phys Rev Lett 89:275502–1–275502–4CrossRef
109.
go back to reference Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501–1–035501–4CrossRef Mottet C, Rossi G, Baletto F, Ferrando R (2005) Single impurity effect on the melting of nanoclusters. Phys Rev Lett 95:035501–1–035501–4CrossRef
110.
go back to reference Christian JW (1965) Theory of transformation in metals and alloys. Pergamon Press, New York Christian JW (1965) Theory of transformation in metals and alloys. Pergamon Press, New York
111.
go back to reference Neimark A, Ravikovitch PI, Vishnyakov A (2002) Inside the hysteresis loop: multiplicity of internal states in confined fluids. Phys Rev E 65:031505-1–031505-6CrossRef Neimark A, Ravikovitch PI, Vishnyakov A (2002) Inside the hysteresis loop: multiplicity of internal states in confined fluids. Phys Rev E 65:031505-1–031505-6CrossRef
112.
go back to reference Gelb Lev D, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Phase separation in confined systems. Rep Prog Phys 62:1573–1659CrossRef Gelb Lev D, Gubbins KE, Radhakrishnan R, Sliwinska-Bartkowiak M (1999) Phase separation in confined systems. Rep Prog Phys 62:1573–1659CrossRef
113.
go back to reference Arabczyk W, Ekiert EA, Pelka R (2016) Hysteresis phenomenon in the reaction system of nanocrystalline iron with mixture of ammonia and hydrogen. Phys Chem Chem Phys 18:25796–25800CrossRef Arabczyk W, Ekiert EA, Pelka R (2016) Hysteresis phenomenon in the reaction system of nanocrystalline iron with mixture of ammonia and hydrogen. Phys Chem Chem Phys 18:25796–25800CrossRef
114.
go back to reference Chushak YG, Bartell LS (2003) Freezing of Ni–Al bimetallic nanoclusters in computer simulations. J Phys Chem B 107:3747–3751CrossRef Chushak YG, Bartell LS (2003) Freezing of Ni–Al bimetallic nanoclusters in computer simulations. J Phys Chem B 107:3747–3751CrossRef
115.
go back to reference Liu HB, Pal U, Perez R, Ascencio JA (2003) Structural transformation of Au–Pd bimetallic nanoclusters on thermal heating and cooling: a dynamic analysis. J Phys Chem B 110:5191–5195CrossRef Liu HB, Pal U, Perez R, Ascencio JA (2003) Structural transformation of Au–Pd bimetallic nanoclusters on thermal heating and cooling: a dynamic analysis. J Phys Chem B 110:5191–5195CrossRef
116.
go back to reference Kaptay G (2010) The extension of the phase rule to nano-systems and on the quaternary point in one-component nano phase diagrams. J Nanosci Nanotechnol 10(12):8164–8170CrossRef Kaptay G (2010) The extension of the phase rule to nano-systems and on the quaternary point in one-component nano phase diagrams. J Nanosci Nanotechnol 10(12):8164–8170CrossRef
118.
go back to reference Chen SL, Daniel S, Zhang F, Cang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and its applications. CALPHAD 26:175–188CrossRef Chen SL, Daniel S, Zhang F, Cang YA, Yan XY, Xie FY, Schmid-Fetzer R, Oates WA (2002) The PANDAT software package and its applications. CALPHAD 26:175–188CrossRef
119.
go back to reference Bale CW, Chartrand P, Degterov SA, Erikson G, Hack K, Ben R, Melancon J, Pelton AD, Petersen S (2002) Fact Sage thermochemical software and databases. CALPHAD 26:189–228CrossRef Bale CW, Chartrand P, Degterov SA, Erikson G, Hack K, Ben R, Melancon J, Pelton AD, Petersen S (2002) Fact Sage thermochemical software and databases. CALPHAD 26:189–228CrossRef
120.
go back to reference Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA—thermodynamic and phase equilibrium software from the national physical laboratory. CALPHAD 26:229–271CrossRef Davies RH, Dinsdale AT, Gisby JA, Robinson JAJ, Martin SM (2002) MTDATA—thermodynamic and phase equilibrium software from the national physical laboratory. CALPHAD 26:229–271CrossRef
Metadata
Title
Solidification loops in the phase diagram of nanoscale alloy particles: from a specific example towards a general vision
Authors
Aram Shirinyan
Gerhard Wilde
Yuriy Bilogorodskyy
Publication date
19-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1697-y

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners