Skip to main content
Top
Published in: Journal of Materials Science 4/2018

16-10-2017 | Composites

Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity

Authors: Wenbin Yang, Li Zhang, Yongli Guo, Zhuoni Jiang, Fangfang He, Changqiong Xie, Jinghui Fan, Juying Wu, Kai Zhang

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Paraffin, due to its linear chain and saturated hydrocarbons with low thermal conductivity, is difficult to transfer energy effectively. Using amphiphilicity of graphene oxide (GO), Pickering emulsion of paraffin@GO was obtained and then paraffin@graphene microencapsulated phase change materials (MEPCMs) were achieved by chemical reduction through adding hydrazine hydrate. Thermally conductive PCMs with segregated structure were constructed by hot compression of paraffin@graphene microencapsules. Scanning electronic microscopy, differential scanning calorimetry and thermal conductivity test were used to characterize microstructure and thermal properties of MEPCMs. Meanwhile, the effect of graphene on the phase change latent heat and phase transition temperature was investigated. Results indicated that GO did not react with paraffin during the process of chemical reduction and the obtained MEPCMs were regular spheres. These MEPCMs had paraffin content of 99% or even more. Graphene working as shell materials increased the phase change latent heat of paraffin from 227.6 to 232.4 J/g, without affecting the phase transition temperature. The hot-compress molding makes graphene shell form segregated structure with more thermal pathways, further enhancing thermal conductivity. The segregated-structure PCMs with high latent heat and thermal conductivity can be applied in energy storage field.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Khan MMA, Saidur R, Al-Sulaiman FA (2017) A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renew Sust Energy Rev 76:105–137CrossRef Khan MMA, Saidur R, Al-Sulaiman FA (2017) A review for phase change materials (PCMs) in solar absorption refrigeration systems. Renew Sust Energy Rev 76:105–137CrossRef
2.
go back to reference Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sust Energy Rev 11:1146–1166CrossRef Tyagi VV, Buddhi D (2007) PCM thermal storage in buildings: a state of art. Renew Sust Energy Rev 11:1146–1166CrossRef
3.
go back to reference Jeon J, Lee J-H, Seo J et al (2013) Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim 111:279–288CrossRef Jeon J, Lee J-H, Seo J et al (2013) Application of PCM thermal energy storage system to reduce building energy consumption. J Therm Anal Calorim 111:279–288CrossRef
4.
go back to reference Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202CrossRef Hawlader MNA, Uddin MS, Khin MM (2003) Microencapsulated PCM thermal-energy storage system. Appl Energy 74:195–202CrossRef
5.
go back to reference Yuan KJ, Wang HC, Liu J et al (2015) Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance. Sol Energy Mater Sol Cells 143:29–37CrossRef Yuan KJ, Wang HC, Liu J et al (2015) Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance. Sol Energy Mater Sol Cells 143:29–37CrossRef
6.
go back to reference Zhang L, Yang W, Jiang Z et al (2017) Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance. Appl Energy 197:354–363CrossRef Zhang L, Yang W, Jiang Z et al (2017) Graphene oxide-modified microencapsulated phase change materials with high encapsulation capacity and enhanced leakage-prevention performance. Appl Energy 197:354–363CrossRef
7.
go back to reference Li MG, Zhang Y, Xu YH et al (2011) Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. Polym Bull 67:541CrossRef Li MG, Zhang Y, Xu YH et al (2011) Effect of different amounts of surfactant on characteristics of nanoencapsulated phase-change materials. Polym Bull 67:541CrossRef
8.
go back to reference Sánchez-Silva L, Tsavalas J, Sundberg D et al (2010) Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res 49:12204–12211CrossRef Sánchez-Silva L, Tsavalas J, Sundberg D et al (2010) Synthesis and characterization of paraffin wax microcapsules with acrylic-based polymer shells. Ind Eng Chem Res 49:12204–12211CrossRef
9.
go back to reference Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sust Energ Rev 15:3813–3832CrossRef Zhao CY, Zhang GH (2011) Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications. Renew Sust Energ Rev 15:3813–3832CrossRef
10.
go back to reference Li J, Xue P, Ding W et al (2009) Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93:1761–1767CrossRef Li J, Xue P, Ding W et al (2009) Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage. Sol Energy Mater Sol Cells 93:1761–1767CrossRef
11.
go back to reference Dao TD, Jeong HM (2016) A Pickering emulsion route to a stearic acid/graphene core–shell composite phase change material. Carbon 99:49–57CrossRef Dao TD, Jeong HM (2016) A Pickering emulsion route to a stearic acid/graphene core–shell composite phase change material. Carbon 99:49–57CrossRef
12.
go back to reference Dao TD, Jeong HM (2015) Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Sol Energy Mater Sol Cells 137:227–234CrossRef Dao TD, Jeong HM (2015) Novel stearic acid/graphene core–shell composite microcapsule as a phase change material exhibiting high shape stability and performance. Sol Energy Mater Sol Cells 137:227–234CrossRef
13.
go back to reference Yang J, Qi G-Q, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702CrossRef Yang J, Qi G-Q, Liu Y et al (2016) Hybrid graphene aerogels/phase change material composites: thermal conductivity, shape-stabilization and light-to-thermal energy storage. Carbon 100:693–702CrossRef
14.
go back to reference Shang Y, Zhang D (2017) Preparation and characterization of three-dimensional graphene network encapsulating 1-hexadecanol composite. Appl Therm Eng 111:353–357CrossRef Shang Y, Zhang D (2017) Preparation and characterization of three-dimensional graphene network encapsulating 1-hexadecanol composite. Appl Therm Eng 111:353–357CrossRef
15.
go back to reference Ye S, Zhang Q, Hu D et al (2015) Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A 3:4018–4025CrossRef Ye S, Zhang Q, Hu D et al (2015) Core-shell-like structured graphene aerogel encapsulating paraffin: shape-stable phase change material for thermal energy storage. J Mater Chem A 3:4018–4025CrossRef
16.
go back to reference Yoo TJ, Hwang E-B, Jeong YG (2016) Thermal and electrical properties of poly(phenylene sulfide)/carbon nanotube nanocomposite films with a segregated structure. Compos Part A: Appl Sci Manufac 91:77–84CrossRef Yoo TJ, Hwang E-B, Jeong YG (2016) Thermal and electrical properties of poly(phenylene sulfide)/carbon nanotube nanocomposite films with a segregated structure. Compos Part A: Appl Sci Manufac 91:77–84CrossRef
17.
go back to reference George N, Bipinbal PK, Bhadran B et al (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277CrossRef George N, Bipinbal PK, Bhadran B et al (2017) Segregated network formation of multiwalled carbon nanotubes in natural rubber through surfactant assisted latex compounding: a novel technique for multifunctional properties. Polymer 112:264–277CrossRef
18.
go back to reference Hu M, Feng J, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34CrossRef Hu M, Feng J, Ng KM (2015) Thermally conductive PP/AlN composites with a 3-D segregated structure. Compos Sci Technol 110:26–34CrossRef
19.
go back to reference Liu HR, Yang WB, He FF et al (2014) Graphene-based composite with microwave absorption property prepared by in situ reduction. Polym Compos 35:461–467CrossRef Liu HR, Yang WB, He FF et al (2014) Graphene-based composite with microwave absorption property prepared by in situ reduction. Polym Compos 35:461–467CrossRef
20.
go back to reference Tadros TF (2013) Emulsion formation, stability, and rheology. In: emulsion formation and stability. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–75 Tadros TF (2013) Emulsion formation, stability, and rheology. In: emulsion formation and stability. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 1–75
21.
go back to reference Li JF, Lu W, Zeng YB et al (2014) Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene. Sol Energy Mater Sol Cells 128:48–51CrossRef Li JF, Lu W, Zeng YB et al (2014) Simultaneous enhancement of latent heat and thermal conductivity of docosane-based phase change material in the presence of spongy graphene. Sol Energy Mater Sol Cells 128:48–51CrossRef
22.
go back to reference Wei K, Ma B, Wang H et al (2017) Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells. Polym Bull 74:359–367CrossRef Wei K, Ma B, Wang H et al (2017) Synthesis and thermal properties of novel microencapsulated phase-change materials with binary cores and epoxy polymer shells. Polym Bull 74:359–367CrossRef
23.
go back to reference Wang TY, Wang SF, Luo RL et al (2016) Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl Energy 171:113–119CrossRef Wang TY, Wang SF, Luo RL et al (2016) Microencapsulation of phase change materials with binary cores and calcium carbonate shell for thermal energy storage. Appl Energy 171:113–119CrossRef
24.
go back to reference Hu XF, Huang ZH, Zhang YH (2014) Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials. Carbohydr Polym 101:83–88CrossRef Hu XF, Huang ZH, Zhang YH (2014) Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials. Carbohydr Polym 101:83–88CrossRef
25.
go back to reference Zhang Y, Zheng XH, Wang HT et al (2014) Encapsulated phase change materials stabilized by modified graphene oxide. J Mater Chem A 2:5304–5314CrossRef Zhang Y, Zheng XH, Wang HT et al (2014) Encapsulated phase change materials stabilized by modified graphene oxide. J Mater Chem A 2:5304–5314CrossRef
26.
go back to reference Sari A, Alkan C, Bilgin C (2014) Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Appl Energy 136:217–227CrossRef Sari A, Alkan C, Bilgin C (2014) Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: preparation, characterization and latent heat thermal energy storage properties. Appl Energy 136:217–227CrossRef
27.
go back to reference Su W, Darkwa J, Kokogiannakis G (2017) Development of microencapsulated phase change material for solar thermal energy storage. Appl Therm Eng 112:1205–1212CrossRef Su W, Darkwa J, Kokogiannakis G (2017) Development of microencapsulated phase change material for solar thermal energy storage. Appl Therm Eng 112:1205–1212CrossRef
28.
go back to reference Chen Z, Wang J, Yu F et al (2015) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630CrossRef Chen Z, Wang J, Yu F et al (2015) Preparation and properties of graphene oxide-modified poly(melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J Mater Chem A 3:11624–11630CrossRef
Metadata
Title
Novel segregated-structure phase change materials composed of paraffin@graphene microencapsules with high latent heat and thermal conductivity
Authors
Wenbin Yang
Li Zhang
Yongli Guo
Zhuoni Jiang
Fangfang He
Changqiong Xie
Jinghui Fan
Juying Wu
Kai Zhang
Publication date
16-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1693-2

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners