Skip to main content
Top
Published in: Journal of Materials Science 4/2018

26-10-2017 | Biomaterials

In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions

Authors: Gioacchino Conoscenti, Francesco Carfì Pavia, Francesca Elisa Ciraldo, Liliana Liverani, Valerio Brucato, Vincenzo La Carrubba, Aldo R. Boccaccini

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The objective of this study was to compare the effect of two bioglass (BG) compositions 45S5 and 1393 in poly-l-lactic composite scaffolds in terms of morphology, mechanical properties, biodegradation, water uptake and bioactivity. The scaffolds were produced via thermally induced phase separation starting from a ternary polymer solution (polymer/solvent/non-solvent). Furthermore, different BG to polymer ratios have been selected (1, 2.5, 5% wt/wt) to evaluate the effect of the amount of filler on the composite structure. Results show that the addition of 1393BG does not affect the scaffold morphology, whereas the 45S5BG at the highest amount tends to appreciably modify the scaffold architecture interacting with the phase separation process. Bioactivity tests confirmed the formation of a hydroxycarbonateapatite-layer in both types of BGs (detected via scanning electron microscopy, X-ray diffractometry and Fourier Transform Infrared Spectroscopy). Overall, the results showed that 1393BG composition affects the experimental preparation protocol to a minimal extent thus allowing a better control of the scaffold’s morphology compared to 45S5BG.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828CrossRef Sun F, Zhou H, Lee J (2011) Various preparation methods of highly porous hydroxyapatite/polymer nanoscale biocomposites for bone regeneration. Acta Biomater 7:3813–3828CrossRef
2.
go back to reference Lin YM, Boccaccini AR, Polak JM et al (2006) Biocompatibility of poly-dl-lactic acid (PDLLA) for lung tissue engineering. J Biomater Appl 21:109–118CrossRef Lin YM, Boccaccini AR, Polak JM et al (2006) Biocompatibility of poly-dl-lactic acid (PDLLA) for lung tissue engineering. J Biomater Appl 21:109–118CrossRef
3.
go back to reference Weigel T, Schinkel G, Lendlein A (2006) Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 3:835–851CrossRef Weigel T, Schinkel G, Lendlein A (2006) Design and preparation of polymeric scaffolds for tissue engineering. Expert Rev Med Devices 3:835–851CrossRef
4.
go back to reference Liu YS, Huang QL, Kienzle A et al (2014) In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater Sci Eng C Mater Biol Appl 38:227–234CrossRef Liu YS, Huang QL, Kienzle A et al (2014) In vitro degradation of porous PLLA/pearl powder composite scaffolds. Mater Sci Eng C Mater Biol Appl 38:227–234CrossRef
5.
go back to reference Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431CrossRef
6.
go back to reference Jones JR (2015) Review of bioactive glass: from Hench to hybrids. Acta Biomater 23:S53–S82CrossRef Jones JR (2015) Review of bioactive glass: from Hench to hybrids. Acta Biomater 23:S53–S82CrossRef
7.
go back to reference Baino F, Fiorilli S, Vitale-Brovarone C (2016) Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater 42:18–32CrossRef Baino F, Fiorilli S, Vitale-Brovarone C (2016) Bioactive glass-based materials with hierarchical porosity for medical applications: review of recent advances. Acta Biomater 42:18–32CrossRef
8.
go back to reference Montazerian M, Dutra Zanotto E (2016) History and trends of bioactive glass-ceramics. J Biomed Mater Res Part A 104:1231–1249CrossRef Montazerian M, Dutra Zanotto E (2016) History and trends of bioactive glass-ceramics. J Biomed Mater Res Part A 104:1231–1249CrossRef
9.
go back to reference Verrier S, Blaker JJ, Maquet V et al (2004) PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021CrossRef Verrier S, Blaker JJ, Maquet V et al (2004) PDLLA/Bioglass® composites for soft-tissue and hard-tissue engineering: an in vitro cell biology assessment. Biomaterials 25:3013–3021CrossRef
10.
go back to reference Durgalakshmi D, Balakumar S (2015) Analysis of solvent induced porous PMMA-bioglass monoliths by the phase separation method–mechanical and in vitro biocompatible studies. Phys Chem Chem Phys 17:1247–1256CrossRef Durgalakshmi D, Balakumar S (2015) Analysis of solvent induced porous PMMA-bioglass monoliths by the phase separation method–mechanical and in vitro biocompatible studies. Phys Chem Chem Phys 17:1247–1256CrossRef
11.
go back to reference Ryszkowska JL, Auguścik M, Sheikh A, Boccaccini AR (2010) Biodegradable polyurethane composite scaffolds containing bioglass for bone tissue engineering. Compos Sci Technol 70:1894–1908CrossRef Ryszkowska JL, Auguścik M, Sheikh A, Boccaccini AR (2010) Biodegradable polyurethane composite scaffolds containing bioglass for bone tissue engineering. Compos Sci Technol 70:1894–1908CrossRef
12.
go back to reference Hench LL (2015) Opening paper 2015-some comments on bioglass: four eras of discovery and development. Biomed Glas 1:1–11 Hench LL (2015) Opening paper 2015-some comments on bioglass: four eras of discovery and development. Biomed Glas 1:1–11
13.
go back to reference Huang W, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17:583–596CrossRef Huang W, Day DE, Kittiratanapiboon K, Rahaman MN (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17:583–596CrossRef
14.
go back to reference Rahaman MN, Day DE, Sonny Bal B et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRef Rahaman MN, Day DE, Sonny Bal B et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7:2355–2373CrossRef
15.
go back to reference Bi L, Jung S, Day D et al (2012) Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res Part A 100 A:3267–3275CrossRef Bi L, Jung S, Day D et al (2012) Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res Part A 100 A:3267–3275CrossRef
16.
go back to reference Noh D-YY, An Y-HH, Jo I-HH et al (2016) Synthesis of nanofibrous gelatin/silica bioglass composite microspheres using emulsion coupled with thermally induced phase separation. Mater Sci Eng C 62:678–685CrossRef Noh D-YY, An Y-HH, Jo I-HH et al (2016) Synthesis of nanofibrous gelatin/silica bioglass composite microspheres using emulsion coupled with thermally induced phase separation. Mater Sci Eng C 62:678–685CrossRef
17.
go back to reference Niu Y, Guo L, Liu J et al (2015) Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration. J Mater Chem B 3:2962–2970CrossRef Niu Y, Guo L, Liu J et al (2015) Bioactive and degradable scaffolds of the mesoporous bioglass and poly(l-lactide) composite for bone tissue regeneration. J Mater Chem B 3:2962–2970CrossRef
18.
go back to reference Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446CrossRef Vert M, Li SM, Spenlehauer G, Guerin P (1992) Bioresorbability and biocompatibility of aliphatic polyesters. J Mater Sci Mater Med 3:432–446CrossRef
19.
go back to reference Chen Y, Mak A, Wang M et al (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol 201:575–580CrossRef Chen Y, Mak A, Wang M et al (2006) PLLA scaffolds with biomimetic apatite coating and biomimetic apatite/collagen composite coating to enhance osteoblast-like cells attachment and activity. Surf Coat Technol 201:575–580CrossRef
20.
go back to reference Wu F, Wei J, Liu C et al (2012) Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Compos Part B Eng 43:2192–2197CrossRef Wu F, Wei J, Liu C et al (2012) Fabrication and properties of porous scaffold of zein/PCL biocomposite for bone tissue engineering. Compos Part B Eng 43:2192–2197CrossRef
21.
go back to reference Carfì Pavia F, La Carrubba V, Brucato V et al (2009) Tuning of biodegradation rate of PLLA scaffolds via blending with PLA. Int J Mater Form 2:713–716CrossRef Carfì Pavia F, La Carrubba V, Brucato V et al (2009) Tuning of biodegradation rate of PLLA scaffolds via blending with PLA. Int J Mater Form 2:713–716CrossRef
22.
go back to reference Conoscenti G, Schneider T, Stoelzel K et al (2017) PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Mater Sci Eng C 80:449–459CrossRef Conoscenti G, Schneider T, Stoelzel K et al (2017) PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Mater Sci Eng C 80:449–459CrossRef
23.
go back to reference Maquet V, Boccaccini AR, Pravata L et al (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass(R)-filled polylactide foams. Biomed Mater Res A 66A:335–346CrossRef Maquet V, Boccaccini AR, Pravata L et al (2003) Preparation, characterization, and in vitro degradation of bioresorbable and bioactive composites based on Bioglass(R)-filled polylactide foams. Biomed Mater Res A 66A:335–346CrossRef
24.
go back to reference Maquet V, Boccaccini AR, Pravata L et al (2004) Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials 25:4185–4194CrossRef Maquet V, Boccaccini AR, Pravata L et al (2004) Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation. Biomaterials 25:4185–4194CrossRef
25.
go back to reference Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429CrossRef Boccaccini AR, Maquet V (2003) Bioresorbable and bioactive polymer/Bioglass® composites with tailored pore structure for tissue engineering applications. Compos Sci Technol 63:2417–2429CrossRef
26.
go back to reference Akbarzadeh R, Yousefi A-M (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102:1304–1315CrossRef Akbarzadeh R, Yousefi A-M (2014) Effects of processing parameters in thermally induced phase separation technique on porous architecture of scaffolds for bone tissue engineering. J Biomed Mater Res B Appl Biomater 102:1304–1315CrossRef
27.
go back to reference Mannella GA, Carfì Pavia F, Conoscenti G et al (2014) Evidence of mechanisms occurring in thermally induced phase separation of polymeric systems. J Polym Sci Part B Polym Phys 52:979–983CrossRef Mannella GA, Carfì Pavia F, Conoscenti G et al (2014) Evidence of mechanisms occurring in thermally induced phase separation of polymeric systems. J Polym Sci Part B Polym Phys 52:979–983CrossRef
28.
go back to reference Ghersi G, Carfì Pavia F, Conoscenti G et al (2016) PLLA Scaffold via TIPS for bone tissue engineering. Chem Eng Trans 49:301–306 Ghersi G, Carfì Pavia F, Conoscenti G et al (2016) PLLA Scaffold via TIPS for bone tissue engineering. Chem Eng Trans 49:301–306
29.
go back to reference Hoppe A, Meszaros R, Stähli C et al (2013) In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B 1:5659CrossRef Hoppe A, Meszaros R, Stähli C et al (2013) In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J Mater Chem B 1:5659CrossRef
30.
go back to reference Hoppe A, Jokic B, Janackovic D et al (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877CrossRef Hoppe A, Jokic B, Janackovic D et al (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877CrossRef
31.
go back to reference Hua FJ, Park TG, Lee DS (2003) A facile preparation of highly interconnected macroporous poly(d, l-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer (Guildf) 44:1911–1920CrossRef Hua FJ, Park TG, Lee DS (2003) A facile preparation of highly interconnected macroporous poly(d, l-lactic acid-co-glycolic acid) (PLGA) scaffolds by liquid-liquid phase separation of a PLGA-dioxane-water ternary system. Polymer (Guildf) 44:1911–1920CrossRef
32.
go back to reference Hua FJ, Kim GE, Lee JD et al (2002) Macroporous poly(l-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. J Biomed Mater Res 63:161–167CrossRef Hua FJ, Kim GE, Lee JD et al (2002) Macroporous poly(l-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid–liquid phase separation of a PLLA–dioxane–water system. J Biomed Mater Res 63:161–167CrossRef
33.
go back to reference Carfi Pavia F, La Carrubba V, Brucato V (2012) Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends. J Cell Plast 48:399–407CrossRef Carfi Pavia F, La Carrubba V, Brucato V (2012) Morphology and thermal properties of foams prepared via thermally induced phase separation based on polylactic acid blends. J Cell Plast 48:399–407CrossRef
34.
go back to reference Gong Y, Ma Z, Gao C et al (2006) Specially elaborated thermally induced phase separation to fabricate poly(l-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 101:3336–3342CrossRef Gong Y, Ma Z, Gao C et al (2006) Specially elaborated thermally induced phase separation to fabricate poly(l-lactic acid) scaffolds with ultra large pores and good interconnectivity. J Appl Polym Sci 101:3336–3342CrossRef
35.
go back to reference Sepulveda P, Jones RJ, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel–derived 58S bioactive glasses. J Biomed Mater Res 58:734–740CrossRef Sepulveda P, Jones RJ, Hench LL (2001) Characterization of melt-derived 45S5 and sol–gel–derived 58S bioactive glasses. J Biomed Mater Res 58:734–740CrossRef
36.
go back to reference Ho ST, Hutmacher DW (2006) A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27:1362–1376CrossRef Ho ST, Hutmacher DW (2006) A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27:1362–1376CrossRef
37.
go back to reference Zhang X, Thomas V, Vohra YK (2009) In Vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers. J Biomed Mater Res Part B Appl Biomater 89:135–147CrossRef Zhang X, Thomas V, Vohra YK (2009) In Vitro biodegradation of designed tubular scaffolds of electrospun protein/polyglyconate blend fibers. J Biomed Mater Res Part B Appl Biomater 89:135–147CrossRef
39.
go back to reference Cerruti M, Greenspan D, Powers K (2005) Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials 26:1665–1674CrossRef Cerruti M, Greenspan D, Powers K (2005) Effect of pH and ionic strength on the reactivity of Bioglass 45S5. Biomaterials 26:1665–1674CrossRef
40.
go back to reference Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRef Maçon ALB, Kim TB, Valliant EM et al (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10CrossRef
41.
go back to reference Bai C, Franchin G, Elsayed H, et al. (2017) High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. J Mater Res 32:3251–3259CrossRef Bai C, Franchin G, Elsayed H, et al. (2017) High-porosity geopolymer foams with tailored porosity for thermal insulation and wastewater treatment. J Mater Res 32:3251–3259CrossRef
42.
go back to reference Zhang Y, Rodrigue D, Ait-Kadi A (2003) High-density polyethylene foams. I. Polymer and foam characterization. J Appl Polym Sci 90:2111–2119CrossRef Zhang Y, Rodrigue D, Ait-Kadi A (2003) High-density polyethylene foams. I. Polymer and foam characterization. J Appl Polym Sci 90:2111–2119CrossRef
43.
go back to reference Blaker JJ, Nazhat SN, Maquet V, Boccaccini AR (2011) Long-term in vitro degradation of PDLLA/Bioglass bone scaffolds in acellular simulated body fluid. Acta Biomater 7:829–840CrossRef Blaker JJ, Nazhat SN, Maquet V, Boccaccini AR (2011) Long-term in vitro degradation of PDLLA/Bioglass bone scaffolds in acellular simulated body fluid. Acta Biomater 7:829–840CrossRef
44.
go back to reference Mi HY, Jing X, Salick MR et al (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49:2324–2337. doi:10.1007/s10853-013-7931-3sss CrossRef Mi HY, Jing X, Salick MR et al (2014) Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size. J Mater Sci 49:2324–2337. doi:10.​1007/​s10853-013-7931-3sss CrossRef
45.
go back to reference Lim JI, Park HK (2012) Fabrication of macroporous chitosan/poly(l-lactide) hybrid scaffolds by sodium acetate particulate-leaching method. J Porous Mater 19:383–387CrossRef Lim JI, Park HK (2012) Fabrication of macroporous chitosan/poly(l-lactide) hybrid scaffolds by sodium acetate particulate-leaching method. J Porous Mater 19:383–387CrossRef
46.
go back to reference Krikorian V, Pochan D (2005) Crystallization behavior of poly (l-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527CrossRef Krikorian V, Pochan D (2005) Crystallization behavior of poly (l-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules 38:6520–6527CrossRef
47.
go back to reference Ji L, Wang W, Jin D et al (2015) In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Mater Sci Eng C 46:1–9CrossRef Ji L, Wang W, Jin D et al (2015) In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites. Mater Sci Eng C 46:1–9CrossRef
48.
go back to reference Zhou S, Zheng X, Yu X et al (2007) Hydrogen Bonding Interaction of Poly(d, l-lactide)/hydroxyapatite Nanocomposites. Chem Mater 19:247–253CrossRef Zhou S, Zheng X, Yu X et al (2007) Hydrogen Bonding Interaction of Poly(d, l-lactide)/hydroxyapatite Nanocomposites. Chem Mater 19:247–253CrossRef
49.
go back to reference Blaker JJ, Maquet V, Jérôme R et al (2005) Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652CrossRef Blaker JJ, Maquet V, Jérôme R et al (2005) Mechanical properties of highly porous PDLLA/Bioglass® composite foams as scaffolds for bone tissue engineering. Acta Biomater 1:643–652CrossRef
50.
go back to reference Mannella GA, Conoscenti G, Carfì Pavia F et al (2015) Preparation of polymeric foams with a pore size gradient via Thermally Induced Phase Separation (TIPS). Mater Lett 160:1–4CrossRef Mannella GA, Conoscenti G, Carfì Pavia F et al (2015) Preparation of polymeric foams with a pore size gradient via Thermally Induced Phase Separation (TIPS). Mater Lett 160:1–4CrossRef
51.
go back to reference El-Kady AM, Saad EA, El-Hady BMA, Farag MM (2010) Synthesis of silicate glass/poly(l-lactide) composite scaffolds by freeze-extraction technique: characterization and in vitro bioactivity evaluation. Ceram Int 36:995–1009CrossRef El-Kady AM, Saad EA, El-Hady BMA, Farag MM (2010) Synthesis of silicate glass/poly(l-lactide) composite scaffolds by freeze-extraction technique: characterization and in vitro bioactivity evaluation. Ceram Int 36:995–1009CrossRef
52.
go back to reference Gerhardt LC, Widdows KL, Erol MM et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32:4096–4108CrossRef Gerhardt LC, Widdows KL, Erol MM et al (2011) The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32:4096–4108CrossRef
Metadata
Title
In vitro degradation and bioactivity of composite poly-l-lactic (PLLA)/bioactive glass (BG) scaffolds: comparison of 45S5 and 1393BG compositions
Authors
Gioacchino Conoscenti
Francesco Carfì Pavia
Francesca Elisa Ciraldo
Liliana Liverani
Valerio Brucato
Vincenzo La Carrubba
Aldo R. Boccaccini
Publication date
26-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1743-9

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners