Skip to main content
Top
Published in: Journal of Materials Science 4/2018

31-10-2017 | Metals

Electron diffraction analysis of quenched Fe–C martensite

Authors: T. W. Liu, D. H. Ping, T. Ohmura, M. Ohnuma

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Martensite has a body-centered tetragonal (bct) structure in high carbon steels. However, body-centered cubic (bcc) {112} 〈111〉-type twins instead of bct twins always be observed as the substructure of martensite in high carbon steels. In this paper, martensitic substructure in a quenched high carbon Fe-1.4C (wt%) alloy has been investigated in detail using selected area electron diffraction (SAED) technique in a conventional transmission electron microscopy. The reciprocal lattice of martensite has been built based on the experimental SAED patterns. Two sets of diffraction spots (one face-centered cubic lattice and one hexagonal lattice) in the built reciprocal lattice suggest that two crystalline phases with bcc (or α-Fe) and hexagonal (ω-Fe) structure actually coexist in the twinned martensite. The two-phase diffraction spot patterns from the reciprocal lattice can match perfectly with the experimental results. The fact that the {0001}ω diffraction spot at the 1/3{222}α position and the {0002}ω at 2/3{222}α can support the ω-Fe existence in the twinned martensite.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fink WL, Campbell ED (1926) Influence of heat treatment and carbon content on the structure of pure iron–carbon alloys. Trans Am Soc Steel Treat 9:717–751 Fink WL, Campbell ED (1926) Influence of heat treatment and carbon content on the structure of pure iron–carbon alloys. Trans Am Soc Steel Treat 9:717–751
2.
go back to reference Kurdjumov G, Kaminsky E (1928) X-ray studies of the structure of quenched carbon steels. Nature 122:476CrossRef Kurdjumov G, Kaminsky E (1928) X-ray studies of the structure of quenched carbon steels. Nature 122:476CrossRef
3.
go back to reference Honda K, Nishiyama Z (1932) Nature of the tetragonal and cubic martensites. Trans Am Soc Met 20:464–470 Honda K, Nishiyama Z (1932) Nature of the tetragonal and cubic martensites. Trans Am Soc Met 20:464–470
4.
go back to reference Roberts CS (1953) Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. Trans AIME 197:203–204 Roberts CS (1953) Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite. Trans AIME 197:203–204
5.
go back to reference Bain EC, Paxton HW (1966) Alloying elements in steel, 2nd edn. ASM, Metals Park, pp 123–162 Bain EC, Paxton HW (1966) Alloying elements in steel, 2nd edn. ASM, Metals Park, pp 123–162
6.
go back to reference Sherby OD, Wadsworth J, Lesuer DR, Syn CK (2007) The c/a ratio in quenched Fe–C and Fe–N steels—a heuristic story. Mater Sci Forum 539–543:215–222CrossRef Sherby OD, Wadsworth J, Lesuer DR, Syn CK (2007) The c/a ratio in quenched Fe–C and Fe–N steels—a heuristic story. Mater Sci Forum 539–543:215–222CrossRef
7.
go back to reference Samuel FH (1987) Further investigations on martensites in Fe-0.5 wt% C and Fe-0.5 wt% C-24 wt% Ni melt spun ribbons. J Mater Sci 22:3883–3892. doi:10.1007/BF01133336 Samuel FH (1987) Further investigations on martensites in Fe-0.5 wt% C and Fe-0.5 wt% C-24 wt% Ni melt spun ribbons. J Mater Sci 22:3883–3892. doi:10.​1007/​BF01133336
9.
go back to reference Kelly PM (2012) Phase transformations in steels: diffusionless transformations, high strength steels, modelling and advanced analytical techniques. In: Pereloma E, Edmonds D (eds) Crystallography of martensite transformations in steels. Woodhead Publishing, Cambridge, Ch 1, pp 4–23 Kelly PM (2012) Phase transformations in steels: diffusionless transformations, high strength steels, modelling and advanced analytical techniques. In: Pereloma E, Edmonds D (eds) Crystallography of martensite transformations in steels. Woodhead Publishing, Cambridge, Ch 1, pp 4–23
10.
go back to reference Kelly PM, Nutting J (1960) The martensite transformation in carbon steels. Proc R Soc A 259:45–58CrossRef Kelly PM, Nutting J (1960) The martensite transformation in carbon steels. Proc R Soc A 259:45–58CrossRef
12.
13.
go back to reference Lee HY et al (2010) Substructures of martensite in Fe–1C–17Cr stainless steel. Scr Mater 62:670–673CrossRef Lee HY et al (2010) Substructures of martensite in Fe–1C–17Cr stainless steel. Scr Mater 62:670–673CrossRef
14.
go back to reference Gates JD, Atrens A, Smith IO (1987) Microstructure of as-quenched 3.5 NiCrMoV rotor steel—part II. Double diffraction. Z Werkstofftech 18:179–185CrossRef Gates JD, Atrens A, Smith IO (1987) Microstructure of as-quenched 3.5 NiCrMoV rotor steel—part II. Double diffraction. Z Werkstofftech 18:179–185CrossRef
15.
go back to reference Zhang P, Chen YL, Xiao WL, Ping DH, Zhao XQ (2016) Twin structure of the lath martensite in low carbon steel. Prog Nat Sci Mater Int 26:169–172CrossRef Zhang P, Chen YL, Xiao WL, Ping DH, Zhao XQ (2016) Twin structure of the lath martensite in low carbon steel. Prog Nat Sci Mater Int 26:169–172CrossRef
16.
go back to reference Ping DH, Liu TW, Ohnuma M, Ohmura T, Abe T, Onodera H (2017) Microstructural evolution and carbides in quenched ultralow carbon (Fe–C) alloys. ISIJ Int 57:1233–1240CrossRef Ping DH, Liu TW, Ohnuma M, Ohmura T, Abe T, Onodera H (2017) Microstructural evolution and carbides in quenched ultralow carbon (Fe–C) alloys. ISIJ Int 57:1233–1240CrossRef
17.
go back to reference Ping DH, Geng WT (2013) A popular metastable omega phase in body-centered cubic steels. Mater Chem Phys 139:830–835CrossRef Ping DH, Geng WT (2013) A popular metastable omega phase in body-centered cubic steels. Mater Chem Phys 139:830–835CrossRef
18.
go back to reference Liu TW et al (2015) A new nanoscale metastable iron phase in carbon steels. Sci Rep 5(15331):1–12 Liu TW et al (2015) A new nanoscale metastable iron phase in carbon steels. Sci Rep 5(15331):1–12
19.
go back to reference Ping DH (2015) Understanding solid–solid (fcc → ω + bcc) transition at atomic scale. Acta Metall Sin (Engl Lett) 28:663–670CrossRef Ping DH (2015) Understanding solid–solid (fcc → ω + bcc) transition at atomic scale. Acta Metall Sin (Engl Lett) 28:663–670CrossRef
21.
go back to reference Ping DH (2014) Review on ω phase in body-centered cubic metals and alloys. Acta Metall Sin (Engl Lett) 27:1–11CrossRef Ping DH (2014) Review on ω phase in body-centered cubic metals and alloys. Acta Metall Sin (Engl Lett) 27:1–11CrossRef
22.
go back to reference Sass SL (1969) The ω phase in a Zr-25 at.% Ti alloy. Acta Metall 17:813–820CrossRef Sass SL (1969) The ω phase in a Zr-25 at.% Ti alloy. Acta Metall 17:813–820CrossRef
23.
go back to reference Sikka SK, Vohra YK, Chidambaram R (1982) Omega phase in materials. Prog Mater Sci 27:245–310CrossRef Sikka SK, Vohra YK, Chidambaram R (1982) Omega phase in materials. Prog Mater Sci 27:245–310CrossRef
24.
go back to reference Borie B, Sass SL, Anderassen A (1973) The short-range structure of Ti and Zr b.c.c. solid solutions containing the ω phase. I. General diffraction theory and development of computational techniques. Acta Cryst A 29:585–594CrossRef Borie B, Sass SL, Anderassen A (1973) The short-range structure of Ti and Zr b.c.c. solid solutions containing the ω phase. I. General diffraction theory and development of computational techniques. Acta Cryst A 29:585–594CrossRef
25.
go back to reference Togo A, Tanaka I (2013) Evolution of crystal structures in metallic elements. Phys Rev B 87(184104):1–6 Togo A, Tanaka I (2013) Evolution of crystal structures in metallic elements. Phys Rev B 87(184104):1–6
26.
go back to reference Ikeda Y, Tanaka I (2016) ω Structure in steel: a first-principles study. J Alloys Compd 684:624–627CrossRef Ikeda Y, Tanaka I (2016) ω Structure in steel: a first-principles study. J Alloys Compd 684:624–627CrossRef
27.
go back to reference Ping DH, Man TH, Liu TW, Ohmura T, Tomota Y, Ohnuma M (2017) In-Situ heating TEM study on twinned martensite in quenched Fe-1.4C alloys. CAMP-ISIJ-173 30:253 Ping DH, Man TH, Liu TW, Ohmura T, Tomota Y, Ohnuma M (2017) In-Situ heating TEM study on twinned martensite in quenched Fe-1.4C alloys. CAMP-ISIJ-173 30:253
Metadata
Title
Electron diffraction analysis of quenched Fe–C martensite
Authors
T. W. Liu
D. H. Ping
T. Ohmura
M. Ohnuma
Publication date
31-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1731-0

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners