Skip to main content
Top
Published in: Journal of Materials Science 4/2018

20-11-2017 | Composites

Significant improvement in static and dynamic mechanical properties of graphene oxide–carbon nanotube acrylonitrile butadiene styrene hybrid composites

Authors: Jeevan Jyoti, Arun Singh Babal, Sushant Sharma, S. R. Dhakate, Bhanu Pratap Singh

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Herein, hybridization of graphene nanosheets and carbon nanotubes (CNTs) has been made to solve the problem of restacking of graphene nanosheets and agglomeration of CNTs. The multiwalled carbon nanotubes (MWCNTs), reduced graphene oxide (RGO) and graphene oxide–carbon nanotubes (GCNTs) reinforced acrylonitrile butadiene styrene (ABS) composites have been prepared using micro-twin-screw extruder. The effect of these reinforcements on static and dynamic mechanical properties of composites is studied. The ultimate tensile strength and elastic modulus for 7 wt.% GCNT–ABS composites show enhancement of 26.1 and 71.3% over pure ABS matrix, respectively. Various parameters such as coefficient “C” factor (the ratio of storage modulus of the composite to polymer in glassy and rubbery regions), degree of entanglement, crosslink density and adhesion factor have been calculated to analyze the interaction between fillers and polymer matrix. The 3-D hybrid structure of GCNTs overcomes the associated problem of CNTs agglomeration and graphene restacking. GCNT hybrid composites show higher dispersion as well as effectiveness for increased filler amount as compared to RGO and MWCNTs based composites. GCNTs prove its superiority over MWCNTs and RGO by showing a synergistic effect in the glass transition temperature and storage modulus. Raman spectroscopy and scanning electron microscopy are used to confirm the interaction and distribution of the filler and matrix, respectively.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cheng S, Bocharova V, Belianinov A et al (2016) Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites. Nano Lett 16:3630–3637CrossRef Cheng S, Bocharova V, Belianinov A et al (2016) Unraveling the mechanism of nanoscale mechanical reinforcement in glassy polymer nanocomposites. Nano Lett 16:3630–3637CrossRef
2.
go back to reference Reddy PRS, Reddy TS, Srikanth I et al (2016) Effect of viscoelastic behaviour of glass laminates on their energy absorption subjected to high velocity impact. Mater Des 98:272–279CrossRef Reddy PRS, Reddy TS, Srikanth I et al (2016) Effect of viscoelastic behaviour of glass laminates on their energy absorption subjected to high velocity impact. Mater Des 98:272–279CrossRef
3.
go back to reference Joseph PV, Mathew G, Joseph K et al (2003) Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos A Appl Sci Manuf 34:275–290CrossRef Joseph PV, Mathew G, Joseph K et al (2003) Dynamic mechanical properties of short sisal fibre reinforced polypropylene composites. Compos A Appl Sci Manuf 34:275–290CrossRef
4.
go back to reference Hu Y, Wang S, Ling Z, Zhuang Y et al (2003) Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromol Mater Eng 288:272–276CrossRef Hu Y, Wang S, Ling Z, Zhuang Y et al (2003) Preparation and combustion properties of flame retardant nylon 6/montmorillonite nanocomposite. Macromol Mater Eng 288:272–276CrossRef
5.
go back to reference Alexandre M, Beyer G, Henrist C, Cloots R, Rulmont A et al (2001) “One-pot” preparation of polymer/clay nanocomposites starting from Na + montmorillonite. 1. Melt intercalation of ethylene-vinyl acetate copolymer. Chem Mater 13:3830–3832CrossRef Alexandre M, Beyer G, Henrist C, Cloots R, Rulmont A et al (2001) “One-pot” preparation of polymer/clay nanocomposites starting from Na + montmorillonite. 1. Melt intercalation of ethylene-vinyl acetate copolymer. Chem Mater 13:3830–3832CrossRef
6.
go back to reference Wang S, Hu Y, Song L, Wang Z et al (2002) Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym Degrad Stab 77:423–426CrossRef Wang S, Hu Y, Song L, Wang Z et al (2002) Preparation and thermal properties of ABS/montmorillonite nanocomposite. Polym Degrad Stab 77:423–426CrossRef
7.
go back to reference Wang S, Hu Y, Lin Z, Gui Z et al (2003) Flammability and thermal stability studies of ABS/montmorillonite nanocomposite. Polym Int 52:1045–1049CrossRef Wang S, Hu Y, Lin Z, Gui Z et al (2003) Flammability and thermal stability studies of ABS/montmorillonite nanocomposite. Polym Int 52:1045–1049CrossRef
8.
go back to reference Gilman JW, Jackson CL, Morgan AB et al (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873CrossRef Gilman JW, Jackson CL, Morgan AB et al (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873CrossRef
9.
go back to reference Wang S, Hu Y, Wang Z, Yong T et al (2003) Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites. Polym Degrad Stab 80:157–161CrossRef Wang S, Hu Y, Wang Z, Yong T et al (2003) Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites. Polym Degrad Stab 80:157–161CrossRef
10.
go back to reference Chung D (2003) Structural composite materials tailored for the damping. J Alloy Compd 355:216–223CrossRef Chung D (2003) Structural composite materials tailored for the damping. J Alloy Compd 355:216–223CrossRef
11.
go back to reference Sumita M, Shizuma T et al (1983) Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci Part B Phys 22:601–618CrossRef Sumita M, Shizuma T et al (1983) Effect of reducible properties of temperature, rate of strain, and filler content on the tensile yield stress of nylon 6 composites filled with ultrafine particles. J Macromol Sci Part B Phys 22:601–618CrossRef
12.
go back to reference Wildoer JWG et al (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662):59CrossRef Wildoer JWG et al (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391(6662):59CrossRef
13.
go back to reference Wang Q, Arash B et al (2014) A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci 82:350–360CrossRef Wang Q, Arash B et al (2014) A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci 82:350–360CrossRef
14.
go back to reference Coleman JN, Khan U et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef Coleman JN, Khan U et al (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624–1652CrossRef
15.
go back to reference B. Arash, Q. Wang, et al (2014) Mechanical properties of carbon nanotube/polymer composites, Scientific reports 4: srep 6479 B. Arash, Q. Wang, et al (2014) Mechanical properties of carbon nanotube/polymer composites, Scientific reports 4: srep 6479
16.
go back to reference Debelak B et al (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45:1727–1734CrossRef Debelak B et al (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45:1727–1734CrossRef
17.
go back to reference Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63CrossRef Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63CrossRef
18.
go back to reference Novoselov KS, Geim AK, Morozov S et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov S et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
19.
go back to reference Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park S, Zhu Y et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
20.
go back to reference Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
21.
go back to reference Balandin AA, Ghosh S, Bao W, Calizo I et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
22.
go back to reference Kim, Keun Soo et al (2009) Large- scale growth of graphene films for stretchable transparent electrodes.” nature 457.7230:706 Kim, Keun Soo et al (2009) Large- scale growth of graphene films for stretchable transparent electrodes.” nature 457.7230:706
23.
go back to reference Bae S, Kim H, Lee Y, Xu X, Park J-S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y, Xu X, Park J-S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
24.
go back to reference Reina A, Jia X, Ho J, Nezich D et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef Reina A, Jia X, Ho J, Nezich D et al (2008) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35CrossRef
25.
go back to reference Stankovich S, Dikin DA, Piner RD, Kohlhaas KA et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
26.
go back to reference Zhang H-B, Wang J-W, Yan Q et al (2011) Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21(14):5392–5397CrossRef Zhang H-B, Wang J-W, Yan Q et al (2011) Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide. J Mater Chem 21(14):5392–5397CrossRef
27.
go back to reference Fernández-Merino M, Guardia L et al (2010) Vitamin C as an innocuous and safe reductant for the preparation of graphene suspensions from graphite oxide. J Phys Chem C 114:6426–6432CrossRef Fernández-Merino M, Guardia L et al (2010) Vitamin C as an innocuous and safe reductant for the preparation of graphene suspensions from graphite oxide. J Phys Chem C 114:6426–6432CrossRef
28.
go back to reference Park S et al (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S et al (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
29.
go back to reference Shin HJ, Kim KK et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19:1987–1992CrossRef Shin HJ, Kim KK et al (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Func Mater 19:1987–1992CrossRef
30.
go back to reference Qiu Y, Zhang X et al (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13:12554–12558CrossRef Qiu Y, Zhang X et al (2011) High performance supercapacitors based on highly conductive nitrogen-doped graphene sheets. Phys Chem Chem Phys 13:12554–12558CrossRef
31.
go back to reference Sreekala M, George J et al (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62:339–353CrossRef Sreekala M, George J et al (2002) The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 62:339–353CrossRef
32.
go back to reference Desai T, Keblinski P et al (2005) Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 122:134910CrossRef Desai T, Keblinski P et al (2005) Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 122:134910CrossRef
33.
go back to reference Bansal Amitabh et al (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4(9):693–698CrossRef Bansal Amitabh et al (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4(9):693–698CrossRef
34.
go back to reference Menard KP (2008) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca RatonCrossRef Menard KP (2008) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca RatonCrossRef
35.
go back to reference Cassu SN, Felisberti MI (2005) Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas. Quim Nova 28:255–263CrossRef Cassu SN, Felisberti MI (2005) Comportamento dinâmico-mecânico e relaxações em polímeros e blendas poliméricas. Quim Nova 28:255–263CrossRef
36.
go back to reference Ornaghi HL, Pistor V et al (2012) Effect of the epoxycyclohexyl polyhedral oligomeric silsesquioxane content on the dynamic fragility of an epoxy resin. J Non-Cryst Solids 358:427–432CrossRef Ornaghi HL, Pistor V et al (2012) Effect of the epoxycyclohexyl polyhedral oligomeric silsesquioxane content on the dynamic fragility of an epoxy resin. J Non-Cryst Solids 358:427–432CrossRef
37.
go back to reference Mangal R, Srivastava S et al (2015) Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat Commun 6:7198CrossRef Mangal R, Srivastava S et al (2015) Phase stability and dynamics of entangled polymer-nanoparticle composites. Nat Commun 6:7198CrossRef
38.
go back to reference Pistor V, Ornaghi FG, Ornaghi HL et al (2012) Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Mater Sci Eng A 532:339–345CrossRef Pistor V, Ornaghi FG, Ornaghi HL et al (2012) Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Mater Sci Eng A 532:339–345CrossRef
39.
go back to reference Qazvini NT, Mohammadi N (2005) Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: effect of styrene content. Polymer 46:9088–9096CrossRef Qazvini NT, Mohammadi N (2005) Dynamic mechanical analysis of segmental relaxation in unsaturated polyester resin networks: effect of styrene content. Polymer 46:9088–9096CrossRef
40.
go back to reference Xiang C, Cox PJ, Kukovecz A, Genorio B, Hashim DP, Yan Z et al (2013) Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances. ACS Nano 7:10380–10386CrossRef Xiang C, Cox PJ, Kukovecz A, Genorio B, Hashim DP, Yan Z et al (2013) Functionalized low defect graphene nanoribbons and polyurethane composite film for improved gas barrier and mechanical performances. ACS Nano 7:10380–10386CrossRef
41.
go back to reference Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef Tang L-C, Wan Y-J, Yan D, Pei Y-B, Zhao L et al (2013) The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60:16–27CrossRef
42.
go back to reference Wang X, Gong L-X, Tang L-C, Peng K et al (2015) Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos A Appl Sci Manuf 69:288–298CrossRef Wang X, Gong L-X, Tang L-C, Peng K et al (2015) Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos A Appl Sci Manuf 69:288–298CrossRef
43.
go back to reference Romanzini D, Lavoratti A, Ornaghi HL et al (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15CrossRef Romanzini D, Lavoratti A, Ornaghi HL et al (2013) Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Mater Des 47:9–15CrossRef
44.
go back to reference Araby S, Saber N, Ma X, Kawashima N, Kang H et al (2015) Implication of multi-walled carbon nanotubes on polymer/graphene composites. Mater Des 65:690–699CrossRef Araby S, Saber N, Ma X, Kawashima N, Kang H et al (2015) Implication of multi-walled carbon nanotubes on polymer/graphene composites. Mater Des 65:690–699CrossRef
45.
go back to reference Mathur RB, Chatterjee S et al (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Composites Science and Technology 68:1608–1615CrossRef Mathur RB, Chatterjee S et al (2008) Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties. Composites Science and Technology 68:1608–1615CrossRef
46.
go back to reference Gupta TK, Singh BP et al (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1:9138–9149CrossRef Gupta TK, Singh BP et al (2013) Improved nanoindentation and microwave shielding properties of modified MWCNT reinforced polyurethane composites. J Mater Chem A 1:9138–9149CrossRef
47.
go back to reference Singh BP, Choudhary V et al (2015) Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv Mater Lett 6:104–113CrossRef Singh BP, Choudhary V et al (2015) Solvent free, efficient, industrially viable, fast dispersion process based amine modified MWCNT reinforced epoxy composites of superior mechanical properties. Adv Mater Lett 6:104–113CrossRef
48.
go back to reference Marcano DC, Kosynkin DV et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef Marcano DC, Kosynkin DV et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814CrossRef
49.
go back to reference Gupta TK, Singh BP et al (2015) Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Adv 5:16921–16930CrossRef Gupta TK, Singh BP et al (2015) Superior nano-mechanical properties of reduced graphene oxide reinforced polyurethane composites. RSC Adv 5:16921–16930CrossRef
50.
go back to reference Jyoti J, Basu S, Singh BP et al (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B Eng 83:58–65CrossRef Jyoti J, Basu S, Singh BP et al (2015) Superior mechanical and electrical properties of multiwall carbon nanotube reinforced acrylonitrile butadiene styrene high performance composites. Compos B Eng 83:58–65CrossRef
51.
go back to reference Ratim S, Ahmad S, Bonnia N et al (2016) Tensile behavior of SiCNP and MWCNTs filled toughened epoxy nanocomposites: a comparative study. Procedia Chem 19:228–233CrossRef Ratim S, Ahmad S, Bonnia N et al (2016) Tensile behavior of SiCNP and MWCNTs filled toughened epoxy nanocomposites: a comparative study. Procedia Chem 19:228–233CrossRef
52.
go back to reference Song PA, Liu L, Fu S, Yu Y et al (2013) Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 24:125704CrossRef Song PA, Liu L, Fu S, Yu Y et al (2013) Striking multiple synergies created by combining reduced graphene oxides and carbon nanotubes for polymer nanocomposites. Nanotechnology 24:125704CrossRef
53.
go back to reference Jyoti J, Singh BP et al (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006CrossRef Jyoti J, Singh BP et al (2016) Dynamic mechanical properties of multiwall carbon nanotube reinforced ABS composites and their correlation with entanglement density, adhesion, reinforcement and C factor. RSC Adv 6:3997–4006CrossRef
54.
go back to reference Ponnamma D, Sadasivuni KK et al (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353CrossRef Ponnamma D, Sadasivuni KK et al (2013) Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application. Soft Matter 9:10343–10353CrossRef
55.
go back to reference Song K, Zhang Y, Meng J et al (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Materials 6:2543–2577CrossRef Song K, Zhang Y, Meng J et al (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Materials 6:2543–2577CrossRef
56.
go back to reference Oommen Z, Groeninckx G et al (2000) Dynamic mechanical and thermal properties of physically compatibilized natural rubber/poly (methyl methacrylate) blends by the addition of natural rubber-graft-poly (methyl methacrylate). J Polym Sci B Polym Phys 38:525–536CrossRef Oommen Z, Groeninckx G et al (2000) Dynamic mechanical and thermal properties of physically compatibilized natural rubber/poly (methyl methacrylate) blends by the addition of natural rubber-graft-poly (methyl methacrylate). J Polym Sci B Polym Phys 38:525–536CrossRef
57.
go back to reference Batistakis C, Lyulin AV et al (2012) Slowing down versus acceleration in the dynamics of confined polymer films. Macromolecules 45:7282–7292CrossRef Batistakis C, Lyulin AV et al (2012) Slowing down versus acceleration in the dynamics of confined polymer films. Macromolecules 45:7282–7292CrossRef
58.
go back to reference Hameed N, Sreekumar P, Francis B et al (2007) Morphology, dynamic mechanical and thermal studies on poly (styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos A Appl Sci Manuf 38:2422–2432CrossRef Hameed N, Sreekumar P, Francis B et al (2007) Morphology, dynamic mechanical and thermal studies on poly (styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos A Appl Sci Manuf 38:2422–2432CrossRef
Metadata
Title
Significant improvement in static and dynamic mechanical properties of graphene oxide–carbon nanotube acrylonitrile butadiene styrene hybrid composites
Authors
Jeevan Jyoti
Arun Singh Babal
Sushant Sharma
S. R. Dhakate
Bhanu Pratap Singh
Publication date
20-11-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1592-6

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners