Skip to main content
Top
Published in: Journal of Materials Science 4/2018

26-10-2017 | Computation

Molecular dynamics-based multiscale damage initiation model for CNT/epoxy nanopolymers

Authors: Nithya Subramanian, Bonsung Koo, Ashwin Rai, Aditi Chattopadhyay

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A methodology that accurately simulates the brittle behavior of epoxy polymers initiating at the molecular level due to bond elongation and subsequent bond dissociation is presented in this paper. The system investigated in this study comprises a combination of crystalline carbon nanotubes (CNTs) dispersed in epoxy polymer molecules. Molecular dynamics (MD) simulations are performed with an appropriate bond order-based force field to capture deformation-induced bond dissociation between atoms within the simulation volume. During deformation, the thermal vibration of molecules causes the elongated bonds to re-equilibrate; thus, the effect of mechanical deformation on bond elongation and scission cannot be captured effectively. This issue is overcome by deforming the simulation volume at zero temperature—a technique adopted from the concept of quasi-continuum and demonstrated successfully in the authors’ previous work. Results showed that a combination of MD deformation tests with ultra-high strain rates at near-zero temperatures provides a computationally efficient alternative for the study of bond dissociation phenomenon in amorphous epoxy polymer. In this paper, the ultra-high strain rate deformation approach is extended to the CNT-epoxy system at various CNT weight fractions and the corresponding bond disassociation energy extracted from the simulation volume is used as input to a low-fidelity continuum damage mechanics (CDM) model to demonstrate the bridging of length scales and to study matrix failure at the microscale. The material parameters for the classical CDM model are directly obtained from physics-based atomistic simulations, thus improving the accuracy of the multiscale approach.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Zeng Q, Yu A, Lu G (2003) Molecular dynamics simulation of organic–inorganic nanocomposites: layering behavior and interlayer structure of organoclays. Chem Mater 15(25):4732–4738CrossRef Zeng Q, Yu A, Lu G (2003) Molecular dynamics simulation of organic–inorganic nanocomposites: layering behavior and interlayer structure of organoclays. Chem Mater 15(25):4732–4738CrossRef
2.
go back to reference Jancar J, Douglas J, Starr FW (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343CrossRef Jancar J, Douglas J, Starr FW (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51(15):3321–3343CrossRef
3.
go back to reference Koo B, Liu Y, Zou J (2014) Study of glass transition temperature (T g) of novel stress-sensitive composites using molecular dynamic simulation. Modell Simul Mater Sci Eng 22(6):065018CrossRef Koo B, Liu Y, Zou J (2014) Study of glass transition temperature (T g) of novel stress-sensitive composites using molecular dynamic simulation. Modell Simul Mater Sci Eng 22(6):065018CrossRef
4.
go back to reference Subramanian N, Rai A, Chattopadhyay A (2015) Atomistically informed stochastic multiscale model to predict the behavior of carbon nanotube-enhanced nanocomposites. Carbon 94:661–672CrossRef Subramanian N, Rai A, Chattopadhyay A (2015) Atomistically informed stochastic multiscale model to predict the behavior of carbon nanotube-enhanced nanocomposites. Carbon 94:661–672CrossRef
5.
go back to reference Valavala P, Odegard G (2005) Modeling techniques for determination of mechanical properties of polymer nanocomposites. Rev Adv Mater Sci 9:34–44 Valavala P, Odegard G (2005) Modeling techniques for determination of mechanical properties of polymer nanocomposites. Rev Adv Mater Sci 9:34–44
6.
go back to reference Mott P, Argon A, Suter U (1993) Atomistic modelling of plastic deformation of glassy polymers. Philos Mag A 67(4):931–978CrossRef Mott P, Argon A, Suter U (1993) Atomistic modelling of plastic deformation of glassy polymers. Philos Mag A 67(4):931–978CrossRef
7.
go back to reference Rottler J, Barsky S, Robbins MO (2002) Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. Phys Rev Lett 89(14):148304CrossRef Rottler J, Barsky S, Robbins MO (2002) Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. Phys Rev Lett 89(14):148304CrossRef
8.
go back to reference Rottler J, Robbins MO (2003) Molecular simulations of deformation and failure in bonds formed by glassy polymer adhesives. J Adhes Sci Technol 17(3):369–381CrossRef Rottler J, Robbins MO (2003) Molecular simulations of deformation and failure in bonds formed by glassy polymer adhesives. J Adhes Sci Technol 17(3):369–381CrossRef
9.
go back to reference Lyulin A, Vorselaars B, Mazo M (2005) Strain softening and hardening of amorphous polymers: atomistic simulation of bulk mechanics and local dynamics. EPL (Europhys Lett) 71(4):618–624CrossRef Lyulin A, Vorselaars B, Mazo M (2005) Strain softening and hardening of amorphous polymers: atomistic simulation of bulk mechanics and local dynamics. EPL (Europhys Lett) 71(4):618–624CrossRef
10.
go back to reference Yashiro K, Ito T, Tomita Y (2003) Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension. Int J Mech Sci 45(11):1863–1876CrossRef Yashiro K, Ito T, Tomita Y (2003) Molecular dynamics simulation of deformation behavior in amorphous polymer: nucleation of chain entanglements and network structure under uniaxial tension. Int J Mech Sci 45(11):1863–1876CrossRef
11.
go back to reference Roy S, Akepati A, Hayes N (2012) Multi-scale modeling of nano-particle reinforced polymers in the nonlinear regime. In: Proceedings of the 53nd AIAA-SDM Conference, Honolulu, HI Roy S, Akepati A, Hayes N (2012) Multi-scale modeling of nano-particle reinforced polymers in the nonlinear regime. In: Proceedings of the 53nd AIAA-SDM Conference, Honolulu, HI
12.
go back to reference Panico M, Narayanan S, Brinson L (2010) Simulations of tensile failure in glassy polymers: effect of cross-link density. Modell Simul Mater Sci Eng 18(5):055005CrossRef Panico M, Narayanan S, Brinson L (2010) Simulations of tensile failure in glassy polymers: effect of cross-link density. Modell Simul Mater Sci Eng 18(5):055005CrossRef
13.
go back to reference De Borst R, Sluys L (1991) Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput Methods Appl Mech Eng 90(1):805–827CrossRef De Borst R, Sluys L (1991) Localisation in a Cosserat continuum under static and dynamic loading conditions. Comput Methods Appl Mech Eng 90(1):805–827CrossRef
14.
go back to reference Sayers C, Kachanov M (1991) A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics. Int J Solids Struct 27(6):671–680CrossRef Sayers C, Kachanov M (1991) A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics. Int J Solids Struct 27(6):671–680CrossRef
15.
go back to reference Voyiadjis GZ, Kattan PI (2006) Damage mechanics with fabric tensors. Mech Adv Mater Struct 13(4):285–301CrossRef Voyiadjis GZ, Kattan PI (2006) Damage mechanics with fabric tensors. Mech Adv Mater Struct 13(4):285–301CrossRef
16.
go back to reference Shojaei A, Li G, Fish J (2014) Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics. Int J Solids Struct 51(23):4068–4081CrossRef Shojaei A, Li G, Fish J (2014) Multi-scale constitutive modeling of ceramic matrix composites by continuum damage mechanics. Int J Solids Struct 51(23):4068–4081CrossRef
17.
go back to reference Koo B, Subramanian N, Chattopadhyay A (2016) Molecular dynamics study of brittle fracture in epoxy-based thermoset polymer. Compos Part B Eng 95:433–439CrossRef Koo B, Subramanian N, Chattopadhyay A (2016) Molecular dynamics study of brittle fracture in epoxy-based thermoset polymer. Compos Part B Eng 95:433–439CrossRef
18.
go back to reference Subramaniyan AK, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45(14):4340–4346CrossRef Subramaniyan AK, Sun C (2008) Continuum interpretation of virial stress in molecular simulations. Int J Solids Struct 45(14):4340–4346CrossRef
19.
go back to reference Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRef
20.
go back to reference Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236CrossRef Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118(45):11225–11236CrossRef
21.
go back to reference Zoete V, Cuendet MA, Grosdidier A (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368CrossRef Zoete V, Cuendet MA, Grosdidier A (2011) SwissParam: a fast force field generation tool for small organic molecules. J Comput Chem 32(11):2359–2368CrossRef
22.
go back to reference Van Duin AC, Dasgupta S, Lorant F (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409CrossRef Van Duin AC, Dasgupta S, Lorant F (2001) ReaxFF: a reactive force field for hydrocarbons. J Phys Chem A 105(41):9396–9409CrossRef
23.
go back to reference Chenoweth K, van Duin AC, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053CrossRef Chenoweth K, van Duin AC, Goddard WA (2008) ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. J Phys Chem A 112(5):1040–1053CrossRef
24.
go back to reference Weismiller MR, Duin ACV, Lee J (2010) ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J Phys Chem A 114(17):5485–5492CrossRef Weismiller MR, Duin ACV, Lee J (2010) ReaxFF reactive force field development and applications for molecular dynamics simulations of ammonia borane dehydrogenation and combustion. J Phys Chem A 114(17):5485–5492CrossRef
25.
go back to reference Singh SK, Srinivasan SG, Neek-Amal M (2013) Thermal properties of fluorinated graphene. Phys Rev B 87(10):104114CrossRef Singh SK, Srinivasan SG, Neek-Amal M (2013) Thermal properties of fluorinated graphene. Phys Rev B 87(10):104114CrossRef
26.
go back to reference Mattsson TR, Lane JMD, Cochrane KR (2010) First-principles and classical molecular dynamics simulation of shocked polymers. Phys Rev B 81(5):054103CrossRef Mattsson TR, Lane JMD, Cochrane KR (2010) First-principles and classical molecular dynamics simulation of shocked polymers. Phys Rev B 81(5):054103CrossRef
27.
go back to reference Wei C, Cho K, Srivastava D (2001) Chemical bonding of polymer on carbon nanotube. In: MRS Proceedings, vol 675. Cambridge University Press, Cambridge, pp W4. 7.1 Wei C, Cho K, Srivastava D (2001) Chemical bonding of polymer on carbon nanotube. In: MRS Proceedings, vol 675. Cambridge University Press, Cambridge, pp W4. 7.1
28.
go back to reference Ebewele RO (2010) Polymer science and technology. CRC Press, Boca Raton Ebewele RO (2010) Polymer science and technology. CRC Press, Boca Raton
29.
go back to reference Lin-Vien D, Colthup NB, Fateley WG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, San Diego Lin-Vien D, Colthup NB, Fateley WG (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, San Diego
30.
go back to reference Miller R, Tadmor E, Phillips R (1998) Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng 6(5):607–638CrossRef Miller R, Tadmor E, Phillips R (1998) Quasicontinuum simulation of fracture at the atomic scale. Modell Simul Mater Sci Eng 6(5):607–638CrossRef
31.
go back to reference Zhao H, Aluru N (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108(6):064321CrossRef Zhao H, Aluru N (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108(6):064321CrossRef
32.
go back to reference Karger-Kocsis J (2000) Microstructural and molecular dependence of the work of fracture parameters in semicrystalline and amorphous polymer systems. Eur Struct Integr Soc 27:213–230CrossRef Karger-Kocsis J (2000) Microstructural and molecular dependence of the work of fracture parameters in semicrystalline and amorphous polymer systems. Eur Struct Integr Soc 27:213–230CrossRef
33.
go back to reference Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563CrossRef Tadmor EB, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A 73(6):1529–1563CrossRef
34.
go back to reference Basu A, Wen Q, Mao X (2011) Nonaffine displacements in flexible polymer networks. Macromolecules 44(6):1671–1679CrossRef Basu A, Wen Q, Mao X (2011) Nonaffine displacements in flexible polymer networks. Macromolecules 44(6):1671–1679CrossRef
35.
go back to reference Sommer J, Lay S (2002) Topological structure and nonaffine swelling of bimodal polymer networks. Macromolecules 35(26):9832–9843CrossRef Sommer J, Lay S (2002) Topological structure and nonaffine swelling of bimodal polymer networks. Macromolecules 35(26):9832–9843CrossRef
36.
go back to reference Rai A, Subramanian N, Koo B (2016) Multiscale damage analysis of carbon nanotube nanocomposite using a continuum damage mechanics approach. J Compos Mater, 51(6):847–858 Rai A, Subramanian N, Koo B (2016) Multiscale damage analysis of carbon nanotube nanocomposite using a continuum damage mechanics approach. J Compos Mater, 51(6):847–858
Metadata
Title
Molecular dynamics-based multiscale damage initiation model for CNT/epoxy nanopolymers
Authors
Nithya Subramanian
Bonsung Koo
Ashwin Rai
Aditi Chattopadhyay
Publication date
26-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1733-y

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners