Skip to main content
Top
Published in: Journal of Materials Science 4/2018

26-10-2017 | Polymers

Electrospun poly(vinylidene fluoride) membranes functioning as static charge storage device with controlled crystalline phase by inclusions of nanoscale graphite platelets

Authors: Zhao-Xia Huang, Xiaoxiao Liu, Jiawei Wu, Shing-Chung Wong, George G. Chase, Jin-Ping Qu

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Caused by the nature of polymorphism of poly(vinylidene fluoride) (PVDF), crystalline transformation could significantly influence the properties of PVDF. In this work, electrospun PVDF membranes were studied for their tensile properties and static charge storing capacity with controlled crystalline phase. The crystallinity was found to be influenced by inclusions of nanoscale graphite platelet (NGP). Bead-free nanofibers with uniform structure were determined by scanning electron microscopy (SEM). Structural and intermolecular characterizations were performed by SEM and Fourier transform infrared spectroscopy. Analyses of thermal properties were carried out by using differential scanning calorimetry and thermogravimetric analysis. Experimental results showed that NGP inclusions significantly changed the crystallinity of the PVDF nanofibers by inducing a transition of α-crystalline phase to β-crystals and, therefore, increased the thermal stability of the electrospun membranes. Tensile properties of PVDF membranes with and without NGP inclusions were evaluated by a universal testing system. Due to the increased fraction of β-crystals, the tensile strength, failure strain and Young’s modulus of the composite membrane (NGP0.75) were improved by 31.2, 20.5, 132.4%, respectively, in contrast to virgin PVDF. This result indicated the significant development of small fractions of NGP on the tensile properties of the PVDF nanofibers; moreover, the static charge storage ability of electrospun membranes with and without NGP inclusions was evaluated and showed an enhancement caused by the increased β-crystals fractions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Kang G-D, Cao Y-M (2014) Application and modification of poly (vinylidene fluoride)(PVDF) membranes—a review. J Membr Sci 463:145–165CrossRef Kang G-D, Cao Y-M (2014) Application and modification of poly (vinylidene fluoride)(PVDF) membranes—a review. J Membr Sci 463:145–165CrossRef
2.
go back to reference Zheng J, He A, Li J, Han CC (2007) Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol Rapid Commun 28(22):2159–2162CrossRef Zheng J, He A, Li J, Han CC (2007) Polymorphism control of poly (vinylidene fluoride) through electrospinning. Macromol Rapid Commun 28(22):2159–2162CrossRef
3.
go back to reference Yee WA, Kotaki M, Liu Y, Lu X (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer 48(2):512–521CrossRef Yee WA, Kotaki M, Liu Y, Lu X (2007) Morphology, polymorphism behavior and molecular orientation of electrospun poly (vinylidene fluoride) fibers. Polymer 48(2):512–521CrossRef
4.
go back to reference Broadhurst M, Davis G, McKinney J, Collins R (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride—a model. J Appl Phys 49(10):4992–4997CrossRef Broadhurst M, Davis G, McKinney J, Collins R (1978) Piezoelectricity and pyroelectricity in polyvinylidene fluoride—a model. J Appl Phys 49(10):4992–4997CrossRef
5.
go back to reference Lovinger AJ (1982) Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules 15(1):40–44CrossRef Lovinger AJ (1982) Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules 15(1):40–44CrossRef
6.
go back to reference Zhao Y, Yang W, Zhou Y, Chen Y, Cao X, Yang Y, Xu J, Jiang Y (2016) Effect of crystalline phase on the dielectric and energy storage properties of poly (vinylidene fluoride). J Mater Sci Mater Electron 27(7):7280–7286CrossRef Zhao Y, Yang W, Zhou Y, Chen Y, Cao X, Yang Y, Xu J, Jiang Y (2016) Effect of crystalline phase on the dielectric and energy storage properties of poly (vinylidene fluoride). J Mater Sci Mater Electron 27(7):7280–7286CrossRef
7.
go back to reference Jungnickel B (1999) Poly (vinylidene fluoride)(overview). In: Salamone JC (ed) Polymeric material handbook. CRC Press, New York, p 7115 Jungnickel B (1999) Poly (vinylidene fluoride)(overview). In: Salamone JC (ed) Polymeric material handbook. CRC Press, New York, p 7115
8.
go back to reference El Mohajir B-E, Heymans N (2001) Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 42(13):5661–5667CrossRef El Mohajir B-E, Heymans N (2001) Changes in structural and mechanical behaviour of PVDF with processing and thermomechanical treatments. 1. Change in structure. Polymer 42(13):5661–5667CrossRef
9.
go back to reference Sajkiewicz P, Wasiak A, Gocłowski Z (1999) Phase transitions during stretching of poly (vinylidene fluoride). Eur Polym J 35(3):423–429CrossRef Sajkiewicz P, Wasiak A, Gocłowski Z (1999) Phase transitions during stretching of poly (vinylidene fluoride). Eur Polym J 35(3):423–429CrossRef
10.
go back to reference Gregorio R, Ueno E (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF). J Mater Sci 34(18):4489–4500. doi:10.1023/A:1004689205706 CrossRef Gregorio R, Ueno E (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF). J Mater Sci 34(18):4489–4500. doi:10.​1023/​A:​1004689205706 CrossRef
11.
go back to reference Lee SG, Ha J-W, Sohn E-H, Park IJ, Lee S-B (2016) Enhancement of polar crystalline phase formation in transparent PVDF-CaF 2 composite films. Appl Surf Sci 390:339–345CrossRef Lee SG, Ha J-W, Sohn E-H, Park IJ, Lee S-B (2016) Enhancement of polar crystalline phase formation in transparent PVDF-CaF 2 composite films. Appl Surf Sci 390:339–345CrossRef
12.
go back to reference Boudriaux M, Rault F, Cochrane C, Lemort G, Campagne C, Devaux E, Courtois C (2016) Crystalline forms of PVDF fiber filled with clay components along processing steps. J Appl Polym Sci. doi:10.1002/app.43244 Boudriaux M, Rault F, Cochrane C, Lemort G, Campagne C, Devaux E, Courtois C (2016) Crystalline forms of PVDF fiber filled with clay components along processing steps. J Appl Polym Sci. doi:10.​1002/​app.​43244
13.
go back to reference Salimi A, Yousefi A (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRef Salimi A, Yousefi A (2003) Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym Test 22(6):699–704CrossRef
14.
go back to reference Jahan N, Mighri F, Rodrigue D, Ajji A (2017) Enhanced electroactive β phase in three phase PVDF/CaCO3/nanoclay composites: effect of micro‐CaCO3 and uniaxial stretching. J Appl Polym Sci. doi10.1002/app.44940 Jahan N, Mighri F, Rodrigue D, Ajji A (2017) Enhanced electroactive β phase in three phase PVDF/CaCO3/nanoclay composites: effect of micro‐CaCO3 and uniaxial stretching. J Appl Polym Sci. doi10.​1002/​app.​44940
15.
go back to reference Lolla D, Lolla M, Abutaleb A, Shin HU, Reneker DH, Chase GG (2016) Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols. Materials 9(8):671CrossRef Lolla D, Lolla M, Abutaleb A, Shin HU, Reneker DH, Chase GG (2016) Fabrication, polarization of electrospun polyvinylidene fluoride electret fibers and effect on capturing nanoscale solid aerosols. Materials 9(8):671CrossRef
16.
go back to reference Huang Z-X, Liu X, Wong S-C, Qu J-P (2017) Electrospinning polyvinylidene fluoride/expanded graphite hybrid membranes as high efficiency and reusable water harvester. Mater Lett 202:78–81CrossRef Huang Z-X, Liu X, Wong S-C, Qu J-P (2017) Electrospinning polyvinylidene fluoride/expanded graphite hybrid membranes as high efficiency and reusable water harvester. Mater Lett 202:78–81CrossRef
17.
go back to reference Varabhas J, Chase GG, Reneker D (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49(19):4226–4229CrossRef Varabhas J, Chase GG, Reneker D (2008) Electrospun nanofibers from a porous hollow tube. Polymer 49(19):4226–4229CrossRef
18.
go back to reference Mack JJ, Viculis LM, Ali A, Luoh R, Yang G, Hahn HT, Ko FK, Kaner RB (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17(1):77–80CrossRef Mack JJ, Viculis LM, Ali A, Luoh R, Yang G, Hahn HT, Ko FK, Kaner RB (2005) Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers. Adv Mater 17(1):77–80CrossRef
19.
go back to reference Li Y, Porwal H, Huang Z, Zhang H, Bilotti E, Peijs T (2016) Enhanced thermal and electrical properties of polystyrene-graphene nanofibers via electrospinning. J Nanomater 2016:18CrossRef Li Y, Porwal H, Huang Z, Zhang H, Bilotti E, Peijs T (2016) Enhanced thermal and electrical properties of polystyrene-graphene nanofibers via electrospinning. J Nanomater 2016:18CrossRef
21.
go back to reference Gregorio R Jr, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J Polym Sci B Polym Phys 32(5):859–870CrossRef Gregorio R Jr, Cestari M (1994) Effect of crystallization temperature on the crystalline phase content and morphology of poly (vinylidene fluoride). J Polym Sci B Polym Phys 32(5):859–870CrossRef
22.
go back to reference Baji A, Mai Y-W, Abtahi M, Wong S-C, Liu Y, Li Q (2013) Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos Sci Technol 88:1–8CrossRef Baji A, Mai Y-W, Abtahi M, Wong S-C, Liu Y, Li Q (2013) Microstructure development in electrospun carbon nanotube reinforced polyvinylidene fluoride fibers and its influence on tensile strength and dielectric permittivity. Compos Sci Technol 88:1–8CrossRef
23.
go back to reference Abolhasani MM, Shirvanimoghaddam K, Naebe M (2016) PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol 138:49–56CrossRef Abolhasani MM, Shirvanimoghaddam K, Naebe M (2016) PVDF/graphene composite nanofibers with enhanced piezoelectric performance for development of robust nanogenerators. Compos Sci Technol 138:49–56CrossRef
24.
go back to reference Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26(1):42–50CrossRef Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Test 26(1):42–50CrossRef
25.
go back to reference El Achaby M, Arrakhiz F, Vaudreuil S, Essassi E, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677CrossRef El Achaby M, Arrakhiz F, Vaudreuil S, Essassi E, Qaiss A (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide–PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677CrossRef
26.
go back to reference Gaska K, Xu X, Gubanski S, Kádár R (2017) Electrical, mechanical, and thermal properties of ldpe graphene nanoplatelets composites produced by means of melt extrusion process. Polymers 9(1):11CrossRef Gaska K, Xu X, Gubanski S, Kádár R (2017) Electrical, mechanical, and thermal properties of ldpe graphene nanoplatelets composites produced by means of melt extrusion process. Polymers 9(1):11CrossRef
27.
go back to reference Issa AA, Mariam Al Ali S, Mrlík M, Luyt AS (2016) Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J Polym Res 23(11):232CrossRef Issa AA, Mariam Al Ali S, Mrlík M, Luyt AS (2016) Electrospun PVDF graphene oxide composite fibre mats with tunable physical properties. J Polym Res 23(11):232CrossRef
28.
go back to reference Chiu FC, Chen YJ (2015) Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos A Appl Sci Manuf 68:62–71CrossRef Chiu FC, Chen YJ (2015) Evaluation of thermal, mechanical, and electrical properties of PVDF/GNP binary and PVDF/PMMA/GNP ternary nanocomposites. Compos A Appl Sci Manuf 68:62–71CrossRef
29.
go back to reference Botelho G, Lanceros-Méndez S, Gonçalves AM, Sencadas V, Rocha JG (2008) Relationship between processing conditions, defects and thermal degradation of poly (vinylidene fluoride) in the β-phase. J Non Cryst Solids 354(1):72–78CrossRef Botelho G, Lanceros-Méndez S, Gonçalves AM, Sencadas V, Rocha JG (2008) Relationship between processing conditions, defects and thermal degradation of poly (vinylidene fluoride) in the β-phase. J Non Cryst Solids 354(1):72–78CrossRef
30.
go back to reference Wan C, Chen B (2011) Poly (ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomed Mater 6(5):055010CrossRef Wan C, Chen B (2011) Poly (ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity. Biomed Mater 6(5):055010CrossRef
31.
go back to reference Bao Q, Zhang H, Jx Yang, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Func Mater 20(5):782–791CrossRef Bao Q, Zhang H, Jx Yang, Wang S, Tang DY, Jose R, Ramakrishna S, Lim CT, Loh KP (2010) Graphene–polymer nanofiber membrane for ultrafast photonics. Adv Func Mater 20(5):782–791CrossRef
32.
go back to reference Baji A, Mai YW, Du X, Wong SC (2012) Improved tensile strength and ferroelectric phase content of self-assembled polyvinylidene fluoride fiber yarns. Macromol Mater Eng 297(3):209–213CrossRef Baji A, Mai YW, Du X, Wong SC (2012) Improved tensile strength and ferroelectric phase content of self-assembled polyvinylidene fluoride fiber yarns. Macromol Mater Eng 297(3):209–213CrossRef
33.
go back to reference Huang S, Yee WA, Tjiu WC, Liu Y, Kotaki M, Boey YCF, Ma J, Liu T, Lu X (2008) Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24(23):13621–13626CrossRef Huang S, Yee WA, Tjiu WC, Liu Y, Kotaki M, Boey YCF, Ma J, Liu T, Lu X (2008) Electrospinning of polyvinylidene difluoride with carbon nanotubes: synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 24(23):13621–13626CrossRef
34.
go back to reference Nakamura K, Nagai M, Kanamoto T, Takahashi Y, Furukawa T (2001) Development of oriented structure and properties on drawing of poly (vinylidene fluoride) by solid-state coextrusion. J Polym Sci B Polym Phys 39(12):1371–1380CrossRef Nakamura K, Nagai M, Kanamoto T, Takahashi Y, Furukawa T (2001) Development of oriented structure and properties on drawing of poly (vinylidene fluoride) by solid-state coextrusion. J Polym Sci B Polym Phys 39(12):1371–1380CrossRef
35.
go back to reference Thakur R, Das D, Das A (2013) Electret air filters. Sep Purif Rev 42(2):87–129CrossRef Thakur R, Das D, Das A (2013) Electret air filters. Sep Purif Rev 42(2):87–129CrossRef
36.
go back to reference Shaikhiev I, Galikhanov M, Dryakhlov V, Alekseeva MY, Shaikhiev T (2016) Enhanced purification of oil-in-water emulsions using polymer membranes treated in a dc corona-discharge field. Chem Pet Eng 52(5–6):352–356CrossRef Shaikhiev I, Galikhanov M, Dryakhlov V, Alekseeva MY, Shaikhiev T (2016) Enhanced purification of oil-in-water emulsions using polymer membranes treated in a dc corona-discharge field. Chem Pet Eng 52(5–6):352–356CrossRef
37.
go back to reference Zaccaria M, Fabiani D, Zucchelli A, Belcari J, Bocchi O, Cramer T, Fraboni B (2016) Electret behavior of electrospun PVdF-based polymers. In: 2016 IEEE conference on electrical insulation and dielectric phenomena (CEIDP), IEEE, pp 137–140 Zaccaria M, Fabiani D, Zucchelli A, Belcari J, Bocchi O, Cramer T, Fraboni B (2016) Electret behavior of electrospun PVdF-based polymers. In: 2016 IEEE conference on electrical insulation and dielectric phenomena (CEIDP), IEEE, pp 137–140
Metadata
Title
Electrospun poly(vinylidene fluoride) membranes functioning as static charge storage device with controlled crystalline phase by inclusions of nanoscale graphite platelets
Authors
Zhao-Xia Huang
Xiaoxiao Liu
Jiawei Wu
Shing-Chung Wong
George G. Chase
Jin-Ping Qu
Publication date
26-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1723-0

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners