Skip to main content
Top
Published in: Journal of Materials Science 4/2018

25-10-2017 | Chemical routes to materials

Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil

Authors: Kang Zhang, Xiaohua Zhang, Hengxiang Li, Xiaohan Xing, Li’e Jin, Qing Cao, Ping Li

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Large-scale production of high-quality graphene is very critical for practical applications of graphene materials and devices. Exfoliation of graphite in an aqueous solution of surfactants is one of the most promising approaches to produce graphene. In this study, a novel anionic surfactant [sulfonated used engine oil (SUEO)], which was prepared from used engine oil, was employed to exfoliate the graphite nanoplatelets into graphene sheets in an aqueous solution under sonication to form a stable dispersion. The efficiency of SUEO for exfoliating and dispersing graphene was investigated and compared with that of traditional surfactants, such as sodium dodecyl sulfate, sodium dodecyl benzene sulfate, cetyl trimethyl ammonium bromide, and polyvinylpyrrolidone. Result showed that the graphene dispersion with excellent stability had a higher concentration (0.477 mg/mL) than others at 0.5 g/L optimal SUEO dosage in 4 h sonication time. The superior performance of SUEO can be attributed to its special molecular structures, whose hydrophobic moieties contain cycloalkanes/aromatics with different molecular weights and/or side chain –R with different lengths. Structural diversities are very helpful to the “jigsaw-puzzle” process on the graphene surface, where the total interfacial energy of the mixture system was minimized. Microscopic (SEM, TEM, and AFM) and spectroscopic (XRD, XPS, and Raman) measurements revealed that the dispersion consisted of few-layer graphene sheets with lower levels of defects or oxidation. This study presents a new class of dispersing agents for graphene that assists in the exfoliation process in water with high concentration and the stabilization of the graphene sheets against reaggregation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
2.
3.
go back to reference Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017CrossRef Guo CX, Yang HB, Sheng ZM, Lu ZS, Song QL, Li CM (2010) Layered graphene/quantum dots for photovoltaic devices. Angew Chem Int Ed 49:3014–3017CrossRef
4.
go back to reference Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of grapheme. Chem Rev 110:132–145CrossRef Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of grapheme. Chem Rev 110:132–145CrossRef
5.
go back to reference Dai L (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42CrossRef Dai L (2012) Functionalization of graphene for efficient energy conversion and storage. Acc Chem Res 46:31–42CrossRef
6.
go back to reference Fernández-Merino MJ, Paredes JI, Villar-Rodil S, Guardia L, Solís-Fernández P, Salinas-Torres D, Cazorla-Amorós D, Morallón E, Martínez-Alonso A, Tascón JMD (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 50:3184–3194CrossRef Fernández-Merino MJ, Paredes JI, Villar-Rodil S, Guardia L, Solís-Fernández P, Salinas-Torres D, Cazorla-Amorós D, Morallón E, Martínez-Alonso A, Tascón JMD (2012) Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 50:3184–3194CrossRef
7.
go back to reference Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRef Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH, Yang CW, Pribat D, Lee YH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328–2333CrossRef
8.
go back to reference Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenbery E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef Emtsev KV, Bostwick A, Horn K, Jobst J, Kellogg GL, Ley L, McChesney JL, Ohta T, Reshanov SA, Röhrl J, Rotenbery E, Schmid AK, Waldmann D, Weber HB, Seyller T (2009) Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat Mater 8:203–207CrossRef
9.
go back to reference Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv Mater 21:4383–4387CrossRef Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv Mater 21:4383–4387CrossRef
10.
go back to reference Park S, Ruoff RS (2009) Chemical methods for the production of graphemes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphemes. Nat Nanotechnol 4:217–224CrossRef
11.
go back to reference Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of grapheme. Small 6:864–871CrossRef Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of grapheme. Small 6:864–871CrossRef
12.
go back to reference Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Yoo JH, Yu SM, Choi JY, Kim JM, Yoo JB (2010) The superior dispersion of easily soluble graphite. Small 6:58–62CrossRef Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Yoo JH, Yu SM, Choi JY, Kim JM, Yoo JB (2010) The superior dispersion of easily soluble graphite. Small 6:58–62CrossRef
13.
go back to reference Ramalingam P, Pusuluri ST, Periasamy S, Veerabahu R, Kulandaivel J (2013) Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Adv 3:2369–2378CrossRef Ramalingam P, Pusuluri ST, Periasamy S, Veerabahu R, Kulandaivel J (2013) Role of deoxy group on the high concentration of graphene in surfactant/water media. RSC Adv 3:2369–2378CrossRef
14.
go back to reference McAllister MJ, Li JL, Adamson DH, Schniepp H, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef McAllister MJ, Li JL, Adamson DH, Schniepp H, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404CrossRef
15.
go back to reference Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347CrossRef Stankovich S, Piner RD, Nguyen SBT, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347CrossRef
16.
go back to reference Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen S, Ruoff R (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef Stankovich S, Piner RD, Chen XQ, Wu NQ, Nguyen S, Ruoff R (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRef
17.
go back to reference Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRef Lotya M, Hernandez Y, King PJ, Smith RJ, Nicolosi V, Karlsson LS, Blighe FM, De S, Wang Z, McGovern IT, Duesberg GS, Coleman JN (2009) Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J Am Chem Soc 131:3611–3620CrossRef
18.
go back to reference Kang MS, Kim KT, Lee JU, Jo WH (2013) Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J Mater Chem C 1:1870–1875CrossRef Kang MS, Kim KT, Lee JU, Jo WH (2013) Direct exfoliation of graphite using a non-ionic polymer surfactant for fabrication of transparent and conductive graphene films. J Mater Chem C 1:1870–1875CrossRef
19.
go back to reference Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun ZY, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568CrossRef
20.
go back to reference Korkut S, Roy-Mayhew JD, Dabbs DM, Milius DL, Aksay IA (2011) High surface area tapes produced with functionalized grapheme. ACS Nano 5:5214–5222CrossRef Korkut S, Roy-Mayhew JD, Dabbs DM, Milius DL, Aksay IA (2011) High surface area tapes produced with functionalized grapheme. ACS Nano 5:5214–5222CrossRef
21.
go back to reference Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877CrossRef Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877CrossRef
22.
go back to reference Pu NW, Wang CA, Liu YM, Sung Y, Wang DS, Ger MD (2012) Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J Taiwan Inst Chem E 43:140–146CrossRef Pu NW, Wang CA, Liu YM, Sung Y, Wang DS, Ger MD (2012) Dispersion of graphene in aqueous solutions with different types of surfactants and the production of graphene films by spray or drop coating. J Taiwan Inst Chem E 43:140–146CrossRef
23.
go back to reference He P, Sun J, Tian SY, Yang SW, Ding SJ, Ding GQ, Xie XM, Jiang MH (2014) Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem Mater 27:218–226CrossRef He P, Sun J, Tian SY, Yang SW, Ding SJ, Ding GQ, Xie XM, Jiang MH (2014) Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem Mater 27:218–226CrossRef
24.
go back to reference Ciesielski A, Samorì P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398CrossRef Ciesielski A, Samorì P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398CrossRef
25.
go back to reference Zhang L, Zhang Z, He C, Dai L, Liu J, Wang L (2014) Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano 8:6663–6670CrossRef Zhang L, Zhang Z, He C, Dai L, Liu J, Wang L (2014) Rationally designed surfactants for few-layered graphene exfoliation: ionic groups attached to electron-deficient π-conjugated unit through alkyl spacers. ACS Nano 8:6663–6670CrossRef
26.
go back to reference Ehli C, Rahman GMA, Jux N, Balbinot D, Guldi DM, Paolucci F, Marcaccio M, Paolucci D, Melle-Franco M, Zerbetto F, Campidelli S, Prato M (2006) Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 128:11222–11231CrossRef Ehli C, Rahman GMA, Jux N, Balbinot D, Guldi DM, Paolucci F, Marcaccio M, Paolucci D, Melle-Franco M, Zerbetto F, Campidelli S, Prato M (2006) Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J Am Chem Soc 128:11222–11231CrossRef
27.
go back to reference Lu J, Yang J, Wan J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRef Lu J, Yang J, Wan J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRef
28.
go back to reference Zhang K, Jin LE, Cao Q (2016) Evaluation of modified used engine oil acting as a dispersant for concentrated coal–water slurry. Fuel 175:202–209CrossRef Zhang K, Jin LE, Cao Q (2016) Evaluation of modified used engine oil acting as a dispersant for concentrated coal–water slurry. Fuel 175:202–209CrossRef
29.
go back to reference Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer grapheme. Curr Opin Colloid Int 20:311–321CrossRef Wei Y, Sun Z (2015) Liquid-phase exfoliation of graphite for mass production of pristine few-layer grapheme. Curr Opin Colloid Int 20:311–321CrossRef
30.
go back to reference Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284CrossRef Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, Marder SR (2011) Rylene and related diimides for organic electronics. Adv Mater 23:268–284CrossRef
31.
go back to reference Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662CrossRef Guardia L, Fernández-Merino MJ, Paredes JI, Solís-Fernández P, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2011) High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon 49:1653–1662CrossRef
32.
go back to reference Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101–105CrossRef
33.
go back to reference Halim U, Zheng CR, Yu C, Lin ZY, Jiang S, Cheng R, Huang Y, Duan XF (2013) A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat Commun 4:2213CrossRef Halim U, Zheng CR, Yu C, Lin ZY, Jiang S, Cheng R, Huang Y, Duan XF (2013) A rational design of cosolvent exfoliation of layered materials by directly probing liquid–solid interaction. Nat Commun 4:2213CrossRef
34.
go back to reference Liu WS, Zhou R, Zhou D, Ding GQ, Soah JM, Yue CY, Lu XH (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83:188–197CrossRef Liu WS, Zhou R, Zhou D, Ding GQ, Soah JM, Yue CY, Lu XH (2015) Lignin-assisted direct exfoliation of graphite to graphene in aqueous media and its application in polymer composites. Carbon 83:188–197CrossRef
35.
go back to reference Xu MH, Zhang W, Yu F, Ma YJ, Hu NT, Su YJ, He DN, Liang Q, Yang Z, Zhang YF (2015) One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale 7:10527–10534CrossRef Xu MH, Zhang W, Yu F, Ma YJ, Hu NT, Su YJ, He DN, Liang Q, Yang Z, Zhang YF (2015) One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale 7:10527–10534CrossRef
36.
go back to reference Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162CrossRef Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4:3155–3162CrossRef
37.
go back to reference Sun ZY, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699CrossRef Sun ZY, Nicolosi V, Rickard D, Bergin SD, Aherne D, Coleman JN (2008) Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: dispersion quality and its correlation with zeta potential. J Phys Chem C 112:10692–10699CrossRef
38.
go back to reference Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137CrossRef Chen W, Yan L (2011) In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 3:3132–3137CrossRef
39.
go back to reference Cao MW, Wang NN, Wang L, Zhang Y, Chen YC, Xie ZL, Li ZY, Pambou E, Li RH, Chen CX, Pan F, Xu H, Penny J, Webster JRP, Lu JR (2016) Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides. J Mater Chem B 4:152–161CrossRef Cao MW, Wang NN, Wang L, Zhang Y, Chen YC, Xie ZL, Li ZY, Pambou E, Li RH, Chen CX, Pan F, Xu H, Penny J, Webster JRP, Lu JR (2016) Direct exfoliation of graphite into graphene in aqueous solutions of amphiphilic peptides. J Mater Chem B 4:152–161CrossRef
40.
go back to reference Yang H, Hernandez Y, Schlierf A, Felten A, Eckmann A, Johal S, Louette P, Pireaux JJ, Feng X, Mullen K, Palermo V, Casiraghi C (2013) A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon 53:357–365CrossRef Yang H, Hernandez Y, Schlierf A, Felten A, Eckmann A, Johal S, Louette P, Pireaux JJ, Feng X, Mullen K, Palermo V, Casiraghi C (2013) A simple method for graphene production based on exfoliation of graphite in water using 1-pyrenesulfonic acid sodium salt. Carbon 53:357–365CrossRef
41.
go back to reference Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47–57CrossRef
42.
go back to reference Skaltsas T, Ke X, Bittencourt C, Tagmatarchis N (2013) Ultrasonication induces oxygenated species and defects onto exfoliated grapheme. J Phys Chem C 117:23272–23278CrossRef Skaltsas T, Ke X, Bittencourt C, Tagmatarchis N (2013) Ultrasonication induces oxygenated species and defects onto exfoliated grapheme. J Phys Chem C 117:23272–23278CrossRef
43.
go back to reference Chen IWP, Chen YS, Kao NJ, Wu CW, Zhang YW, Li HT (2015) Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon 90:16–24CrossRef Chen IWP, Chen YS, Kao NJ, Wu CW, Zhang YW, Li HT (2015) Scalable and high-yield production of exfoliated graphene sheets in water and its application to an all-solid-state supercapacitor. Carbon 90:16–24CrossRef
44.
go back to reference Shih CJ, Vijayaraghavan A, Krishnan R, Sharma R, Han JH, Ham MH, Jin Z, Lin S, Paulus GL, Reuel NF, Wang QH, Blankschtein D, Strano MS (2011) Bi-and trilayer graphene solutions. Nat Nanotechnol 6:439–445CrossRef Shih CJ, Vijayaraghavan A, Krishnan R, Sharma R, Han JH, Ham MH, Jin Z, Lin S, Paulus GL, Reuel NF, Wang QH, Blankschtein D, Strano MS (2011) Bi-and trilayer graphene solutions. Nat Nanotechnol 6:439–445CrossRef
45.
go back to reference Shih CJ, Paulus GL, Wang QH, Jin Z, Blankschtein D, Strano MS (2012) Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility. Langmuir 28:8579–8586CrossRef Shih CJ, Paulus GL, Wang QH, Jin Z, Blankschtein D, Strano MS (2012) Understanding surfactant/graphene interactions using a graphene field effect transistor: relating molecular structure to hysteresis and carrier mobility. Langmuir 28:8579–8586CrossRef
Metadata
Title
Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil
Authors
Kang Zhang
Xiaohua Zhang
Hengxiang Li
Xiaohan Xing
Li’e Jin
Qing Cao
Ping Li
Publication date
25-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1729-7

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners