Skip to main content
Top
Published in: Journal of Materials Science 4/2018

25-10-2017 | Chemical routes to materials

Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route

Authors: M. Satheesh Chandran, K. Sunitha, D. S. Gayathri, P. B. Soumyamol, Dona Mathew

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Realization of easily processable, tough phenolic functional polymer materials is of high demand for composite applications. Herein, we report the synthesis of boron-containing phenolic–siloxane hybrid polymers through a facile copper-catalysed azide–alkyne click chemistry (CuAAC) approach. For this, phenolic resoles incorporated with boron (PFB) was propargyl-derivatized and then bridged through triazole moieties using telechelic α, ω azidated polydimethylsiloxane (AZ-PDMS). The propargylated boronated PF (PFBPr) resins exhibited high heat of reaction during thermal cure due to the prevalence of multiple reactions. PFBPr-siloxane hybrid co-polymers exhibited glass transitions in the ranges – 100 to – 75 °C and at 25–35 °C corresponding to soft segment and hard segments. Pyrolysed PFBPr-siloxane products showed mixed phase heterogeneous systems of B and SiC. Introduction of boron and silicon improved the degree of graphitization and reduced the graphite crystallite size of the carbonization products. The pyrolysed compounds of silicon and boron formed during high temperature were conducive for creating a layer of void-free graphitic ordered carbon that improved with boron and silicon content, as revealed by SEM images.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference John B et al (2011) Medium-density ablative composites: processing, characterisation and thermal response under moderate atmospheric re-entry heating conditions. J Mater Sci 46(15):5017–5021CrossRef John B et al (2011) Medium-density ablative composites: processing, characterisation and thermal response under moderate atmospheric re-entry heating conditions. J Mater Sci 46(15):5017–5021CrossRef
2.
go back to reference Pulci G et al (2010) Carbon–phenolic ablative materials for re-entry space vehicles: manufacturing and properties. Compos A 41(10):1483–1490CrossRef Pulci G et al (2010) Carbon–phenolic ablative materials for re-entry space vehicles: manufacturing and properties. Compos A 41(10):1483–1490CrossRef
3.
go back to reference Patton RD et al (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Compos A 33(2):243–251CrossRef Patton RD et al (2002) Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites. Compos A 33(2):243–251CrossRef
4.
go back to reference Bahramian AR et al (2006) Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental. Polymer 47(10):3661–3673CrossRef Bahramian AR et al (2006) Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental. Polymer 47(10):3661–3673CrossRef
5.
go back to reference Natali M et al (2012) Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Compos A 43(1):174–182CrossRef Natali M et al (2012) Ablative properties of carbon black and MWNT/phenolic composites: a comparative study. Compos A 43(1):174–182CrossRef
6.
go back to reference Nair CPR (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29(5):401–498CrossRef Nair CPR (2004) Advances in addition-cure phenolic resins. Prog Polym Sci 29(5):401–498CrossRef
7.
go back to reference Bindu RL et al (2001) Addition-cure phenolic resins based on propargyl ether functional novolacs: synthesis, curing and properties. Polym Int 50(6):651–658CrossRef Bindu RL et al (2001) Addition-cure phenolic resins based on propargyl ether functional novolacs: synthesis, curing and properties. Polym Int 50(6):651–658CrossRef
8.
go back to reference Martín C et al (2006) Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 91(4):747–754CrossRef Martín C et al (2006) Boron-containing novolac resins as flame retardant materials. Polym Degrad Stab 91(4):747–754CrossRef
9.
go back to reference Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44(24):7353–7359CrossRef Abdalla MO, Ludwick A, Mitchell T (2003) Boron-modified phenolic resins for high performance applications. Polymer 44(24):7353–7359CrossRef
10.
go back to reference Liu Y et al (2002) Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde. P Polym Degrad Stab 77(3):495–501CrossRef Liu Y et al (2002) Thermal properties and stability of boron-containing phenol-formaldehyde resin formed from paraformaldehyde. P Polym Degrad Stab 77(3):495–501CrossRef
11.
go back to reference Gao J et al (2004) Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation. Polym Degrad Stab 83(1):71–77CrossRef Gao J et al (2004) Structure of a boron-containing bisphenol-F formaldehyde resin and kinetics of its thermal degradation. Polym Degrad Stab 83(1):71–77CrossRef
12.
go back to reference Wang D-C et al (2008) Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stab 93(1):125–133CrossRef Wang D-C et al (2008) Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stab 93(1):125–133CrossRef
13.
go back to reference Chiang C-L et al (2004) Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym Degrad Stab 83(2):207–214CrossRef Chiang C-L et al (2004) Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym Degrad Stab 83(2):207–214CrossRef
14.
go back to reference Zhang Y et al (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47(9):2984–2996CrossRef Zhang Y et al (2006) Phenolic resin–trisilanolphenyl polyhedral oligomeric silsesquioxane (POSS) hybrid nanocomposites: structure and properties. Polymer 47(9):2984–2996CrossRef
15.
go back to reference Zhuo D et al (2011) Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance. J Mater Chem 21(18):6584–6594CrossRef Zhuo D et al (2011) Flame retardancy materials based on a novel fully end-capped hyperbranched polysiloxane and bismaleimide/diallylbisphenol A resin with simultaneously improved integrated performance. J Mater Chem 21(18):6584–6594CrossRef
16.
go back to reference Wu YH et al (2013) Hybrid nanocomposites based on novolac resin and octa (phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polym Bull (Berlin) 70(12):3261–3277CrossRef Wu YH et al (2013) Hybrid nanocomposites based on novolac resin and octa (phenethyl) polyhedral oligomeric silsesquioxanes (POSS): miscibility, specific interactions and thermomechanical properties. Polym Bull (Berlin) 70(12):3261–3277CrossRef
17.
go back to reference Li S et al (2017) Polysiloxane modified phenolic resin with co-continuous structure. Polymer 120(1):217–222CrossRef Li S et al (2017) Polysiloxane modified phenolic resin with co-continuous structure. Polymer 120(1):217–222CrossRef
18.
go back to reference Li S et al (2016) Structure and improved thermal stability of phenolic resin containing silicon and boron elements. Polym Degrad Stab 133(1):321–329CrossRef Li S et al (2016) Structure and improved thermal stability of phenolic resin containing silicon and boron elements. Polym Degrad Stab 133(1):321–329CrossRef
19.
go back to reference Pittman CU et al (2003) Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol Symp 196(1):301–325CrossRef Pittman CU et al (2003) Hybrid inorganic/organic crosslinked resins containing polyhedral oligomeric silsesquioxanes. Macromol Symp 196(1):301–325CrossRef
20.
go back to reference Pittman CU et al (2006) Chemical Bonding between phenolic resins and polyhedral oligomeric silsesquioxanes (POSS) in inorganic–organic hybrid nanocomposites. J Inorg Organomet Polym Mater 16(1):43–59CrossRef Pittman CU et al (2006) Chemical Bonding between phenolic resins and polyhedral oligomeric silsesquioxanes (POSS) in inorganic–organic hybrid nanocomposites. J Inorg Organomet Polym Mater 16(1):43–59CrossRef
21.
go back to reference Kolb HC et al (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRef Kolb HC et al (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40(11):2004–2021CrossRef
22.
go back to reference Moses JE et al (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262CrossRef Moses JE et al (2007) The growing applications of click chemistry. Chem Soc Rev 36(8):1249–1262CrossRef
23.
go back to reference Hoyle CE et al (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49(9):1540–1573CrossRef Hoyle CE et al (2010) Thiol–ene click chemistry. Angew Chem Int Ed 49(9):1540–1573CrossRef
24.
go back to reference Binder WH, Sachsenhofer R (2007) ‘Click’chemistry in polymer and materials science. Macromol Rapid Commun 28(1):15–54CrossRef Binder WH, Sachsenhofer R (2007) ‘Click’chemistry in polymer and materials science. Macromol Rapid Commun 28(1):15–54CrossRef
25.
go back to reference John B et al (2007) Low-density phenolic syntactic foams: processing and properties. Cell Polym 26(4):229–244 John B et al (2007) Low-density phenolic syntactic foams: processing and properties. Cell Polym 26(4):229–244
26.
go back to reference Madsen et al (2013) Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym Chem 4(5):1700–1707CrossRef Madsen et al (2013) Novel cross-linkers for PDMS networks for controlled and well distributed grafting of functionalities by click chemistry. Polym Chem 4(5):1700–1707CrossRef
27.
go back to reference Ganesh Babu T, Devasia R (2016) Boron-modified phenol formaldehyde resin-based self-healing matrix for Cf/SiBOC composites. Adv Appl Ceram 115(8):457–469CrossRef Ganesh Babu T, Devasia R (2016) Boron-modified phenol formaldehyde resin-based self-healing matrix for Cf/SiBOC composites. Adv Appl Ceram 115(8):457–469CrossRef
28.
go back to reference Zmihorska-Gotfryd A (2006) Phenol-formaldehyde resols modified by boric acid. Polimery 5:386–388 Zmihorska-Gotfryd A (2006) Phenol-formaldehyde resols modified by boric acid. Polimery 5:386–388
29.
go back to reference Kawamoto AM et al (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manag 2(2):169–182CrossRef Kawamoto AM et al (2010) Synthesis of a boron modified phenolic resin. J Aerosp Technol Manag 2(2):169–182CrossRef
30.
go back to reference Novikov N et al (1986) Analysis of the 13C and 1H NMR spectra of phenol-formaldehyde resole oligomers. Polym Sci USSR 28(5):1187–1196CrossRef Novikov N et al (1986) Analysis of the 13C and 1H NMR spectra of phenol-formaldehyde resole oligomers. Polym Sci USSR 28(5):1187–1196CrossRef
31.
go back to reference Nair CR et al (2001) Thermal characteristics of addition-cure phenolic resins. Polym Degrad Stab 73(2):251–257CrossRef Nair CR et al (2001) Thermal characteristics of addition-cure phenolic resins. Polym Degrad Stab 73(2):251–257CrossRef
32.
go back to reference Grenier-Loustalot M et al (1997) Prepolymers with propargylic terminal residues—I. Simulation of reaction mechanisms and kinetics on monofunctional models. Eur Polym J 33(7):1125–1134CrossRef Grenier-Loustalot M et al (1997) Prepolymers with propargylic terminal residues—I. Simulation of reaction mechanisms and kinetics on monofunctional models. Eur Polym J 33(7):1125–1134CrossRef
33.
go back to reference Li S et al (2015) Enhanced compatibility and morphology evolution of the hybrids involving phenolic resin and silicone intermediate. Mater Chem Phys 165(1):25–33CrossRef Li S et al (2015) Enhanced compatibility and morphology evolution of the hybrids involving phenolic resin and silicone intermediate. Mater Chem Phys 165(1):25–33CrossRef
34.
go back to reference Li H et al (2013) Thermal degradation behaviors of polydimethylsiloxane-graft-poly(methyl methacrylate). Thermochim Acta 573(1):32–38CrossRef Li H et al (2013) Thermal degradation behaviors of polydimethylsiloxane-graft-poly(methyl methacrylate). Thermochim Acta 573(1):32–38CrossRef
35.
go back to reference Xu L et al (2012) Fabrication and microstructure of boron-doped isotropic pyrolytic carbon. Carbon 50(12):4705–4710CrossRef Xu L et al (2012) Fabrication and microstructure of boron-doped isotropic pyrolytic carbon. Carbon 50(12):4705–4710CrossRef
36.
go back to reference Lyu SC et al (2011) Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon 49(5):1532–1541CrossRef Lyu SC et al (2011) Synthesis of boron-doped double-walled carbon nanotubes by the catalytic decomposition of tetrahydrofuran and triisopropyl borate. Carbon 49(5):1532–1541CrossRef
37.
go back to reference Li S et al (2016) The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin. Polym Degrad Stab 124(1):68–76CrossRef Li S et al (2016) The effect of structure on thermal stability and anti-oxidation mechanism of silicone modified phenolic resin. Polym Degrad Stab 124(1):68–76CrossRef
38.
go back to reference Cuesta A et al (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532CrossRef Cuesta A et al (1994) Raman microprobe studies on carbon materials. Carbon 32(8):1523–1532CrossRef
39.
go back to reference Babu TG, Devasia R (2016) Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym Mater 26(4):764–772CrossRef Babu TG, Devasia R (2016) Boron modified phenol formaldehyde derived Cf/SiBOC composites with improved mechanical strength for high temperature applications. J Inorg Organomet Polym Mater 26(4):764–772CrossRef
40.
go back to reference Wang S et al (2014) High char yield of aryl boron-containing phenolic resins: the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab 99(1):1–11CrossRef Wang S et al (2014) High char yield of aryl boron-containing phenolic resins: the effect of phenylboronic acid on the thermal stability and carbonization of phenolic resins. Polym Degrad Stab 99(1):1–11CrossRef
41.
go back to reference Liu Y, Jing X (2007) Pyrolysis and structure of hyperbranched polyborate modified phenolic resins. Carbon 45(10):1965–1971CrossRef Liu Y, Jing X (2007) Pyrolysis and structure of hyperbranched polyborate modified phenolic resins. Carbon 45(10):1965–1971CrossRef
42.
go back to reference Shi F et al (2010) A new route to fabricate SiB 4 modified C/SiC composites. J Eur Ceram Soc 30(9):1955–1962CrossRef Shi F et al (2010) A new route to fabricate SiB 4 modified C/SiC composites. J Eur Ceram Soc 30(9):1955–1962CrossRef
43.
go back to reference Ko T-H et al (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81(5):1084–1089CrossRef Ko T-H et al (2001) Microstructural changes of phenolic resin during pyrolysis. J Appl Polym Sci 81(5):1084–1089CrossRef
44.
go back to reference Milonjić S, Bibić N (1995) Influence of boric acid concentration on silicon carbide morphology. J Mater Sci Lett 14(15):1052–1054CrossRef Milonjić S, Bibić N (1995) Influence of boric acid concentration on silicon carbide morphology. J Mater Sci Lett 14(15):1052–1054CrossRef
45.
go back to reference WU Y et al (2001) Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc 123(13):3156–3166 WU Y et al (2001) Direct observation of vapor–liquid–solid nanowire growth. J Am Chem Soc 123(13):3156–3166
Metadata
Title
Boron-containing phenolic–siloxane hybrid polymers through facile click chemistry route
Authors
M. Satheesh Chandran
K. Sunitha
D. S. Gayathri
P. B. Soumyamol
Dona Mathew
Publication date
25-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1737-7

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners