Skip to main content
Top
Published in: Journal of Materials Science 4/2018

12-10-2017 | Electronic materials

Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature electronics

Authors: Jiaqi Wu, Chin C. Lee

Published in: Journal of Materials Science | Issue 4/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A solid-state bonding technique using fine-grained silver (Ag) foils is presented. The Ag foils are manufactured using many runs of cold rolling and subsequent annealing processes to achieve the favorable microstructure. X-ray diffraction and pole figure measurement are performed to examine the crystal structure and grain orientations. Si chips are bonded to bare Cu substrates using the Ag foil as the bonding medium at 300 °C in 0.1 torr vacuum assisted by 6.9 MPa static pressure, which is much lower than that used in conventional thermal compression bonding. Cross sections prepared by focus ion beam show clear bonding interfaces with only a few voids smaller than 100 nm. The bonded structures do not crack after cooling down to room temperature, indicating that the ductile Ag layer is able to manage the strain induced by the large coefficient of thermal expansion mismatch between Si and Cu. The average shear strength of as-bonded samples is 29 MPa. High-temperature storage tests are conducted, and slight increase in strength can be observed after 300 °C aging. Fracture analyses show that the breakage occurs within the Ag foil rather than on the bonding interface. Transmission electron microscopy and energy-dispersive spectroscopy (TEM/EDX) are conducted for Ag/Cu interface after 200-h aging, and the result shows that slight diffusion proceeds during the aging. Since Ag has the highest electrical and thermal conductivities among metals, therefore the bonded structures reported in this paper probably represent the best possible design for high-temperature and high-power electronic packaging applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Beckwith R (2013) Downhole electronic components: achieving performance reliability. J Pet Technol 65:42–57CrossRef Beckwith R (2013) Downhole electronic components: achieving performance reliability. J Pet Technol 65:42–57CrossRef
2.
go back to reference Bernstein L (1966) Semiconductor joining by the solid-liquid-interdiffusion (SLID) process I. The systems Ag–In, Au–In, and Cu–In. J Electrochem Soc 113:1282–1288CrossRef Bernstein L (1966) Semiconductor joining by the solid-liquid-interdiffusion (SLID) process I. The systems Ag–In, Au–In, and Cu–In. J Electrochem Soc 113:1282–1288CrossRef
3.
go back to reference Li X, Cai J, Sohn Y, Wang Q, Kim W, Wang S, Microstructure of Ag–Sn bonding for MEMS packaging. In: 2007 8th international conference on electronic packaging technology, 2007, pp 1–5 Li X, Cai J, Sohn Y, Wang Q, Kim W, Wang S, Microstructure of Ag–Sn bonding for MEMS packaging. In: 2007 8th international conference on electronic packaging technology, 2007, pp 1–5
4.
go back to reference Li JF, Agyakwa PA, Johnson CM (2011) Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater 59:1198–1211CrossRef Li JF, Agyakwa PA, Johnson CM (2011) Interfacial reaction in Cu/Sn/Cu system during the transient liquid phase soldering process. Acta Mater 59:1198–1211CrossRef
5.
go back to reference Bosco NS, Zok FW (2004) Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system. Acta Mater 52:2965–2972CrossRef Bosco NS, Zok FW (2004) Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system. Acta Mater 52:2965–2972CrossRef
6.
go back to reference Zhu ZX, Li CC, Liao LL, Liu CK, Kao CR (2016) Au–Sn bonding material for the assembly of power integrated circuit module. J Alloys Compd 671:340–345CrossRef Zhu ZX, Li CC, Liao LL, Liu CK, Kao CR (2016) Au–Sn bonding material for the assembly of power integrated circuit module. J Alloys Compd 671:340–345CrossRef
7.
go back to reference Li JF, Agyakwa PA, Johnson CM (2014) Suitable thicknesses of base metal and interlayer, and evolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment. J Electron Mater 43:983–995CrossRef Li JF, Agyakwa PA, Johnson CM (2014) Suitable thicknesses of base metal and interlayer, and evolution of phases for Ag/Sn/Ag transient liquid-phase joints used for power die attachment. J Electron Mater 43:983–995CrossRef
8.
go back to reference Bosco NS, Zok FW (2005) Strength of joints produced by transient liquid phase bonding in the Cu–Sn system. Acta Mater 53:2019–2027CrossRef Bosco NS, Zok FW (2005) Strength of joints produced by transient liquid phase bonding in the Cu–Sn system. Acta Mater 53:2019–2027CrossRef
9.
go back to reference Chuang RW, Lee CC (2002) Silver-indium joints produced at low temperature for high temperature devices. IEEE Trans Compon Packag Technol 25:453–458CrossRef Chuang RW, Lee CC (2002) Silver-indium joints produced at low temperature for high temperature devices. IEEE Trans Compon Packag Technol 25:453–458CrossRef
10.
go back to reference Wu YY, Lee CC (2013) High temperature Ag–In joints between Si chips and aluminum. In: 2013 IEEE 63rd electronic components and technology conference, 2013. pp 1617–1620 Wu YY, Lee CC (2013) High temperature Ag–In joints between Si chips and aluminum. In: 2013 IEEE 63rd electronic components and technology conference, 2013. pp 1617–1620
11.
go back to reference Froemel J, Baum M, Wiemer M, Gessner T (2015) Low-temperature wafer bonding using solid-liquid inter-diffusion mechanism. J Microelectromech Syst 24:1973–1980CrossRef Froemel J, Baum M, Wiemer M, Gessner T (2015) Low-temperature wafer bonding using solid-liquid inter-diffusion mechanism. J Microelectromech Syst 24:1973–1980CrossRef
12.
go back to reference Lin SK, Wang MJ, Yeh CY, Chang HM, Liu YC (2017) High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy. J Alloys Compd. 702:561–567CrossRef Lin SK, Wang MJ, Yeh CY, Chang HM, Liu YC (2017) High-strength and thermal stable Cu-to-Cu joint fabricated with transient molten Ga and Ni under-bump-metallurgy. J Alloys Compd. 702:561–567CrossRef
13.
go back to reference Wu YY, Nwoke D, Barlow FD, Lee CC (2014) Thermal cycling reliability study of Ag–In joints between Si chips and Cu substrates made by fluxless processes. IEEE Trans Compon Packaging Manuf Technol 4:1420–1426CrossRef Wu YY, Nwoke D, Barlow FD, Lee CC (2014) Thermal cycling reliability study of Ag–In joints between Si chips and Cu substrates made by fluxless processes. IEEE Trans Compon Packaging Manuf Technol 4:1420–1426CrossRef
14.
go back to reference Maruyama M, Matsubayashi R, Iwakuro H, Isoda S, Komatsu T (2008) Silver nanosintering: a lead-free alternative to soldering. Appl Phys A 93:467–470CrossRef Maruyama M, Matsubayashi R, Iwakuro H, Isoda S, Komatsu T (2008) Silver nanosintering: a lead-free alternative to soldering. Appl Phys A 93:467–470CrossRef
15.
go back to reference Xu QY, Mei YH, Li X, Lu GQ (2016) Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J Alloys Compd 675:317–324CrossRef Xu QY, Mei YH, Li X, Lu GQ (2016) Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J Alloys Compd 675:317–324CrossRef
16.
go back to reference Zhao SY, Li X, Mei YH, Lu GQ (2015) Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron Reliab 55:2524–2531CrossRef Zhao SY, Li X, Mei YH, Lu GQ (2015) Study on high temperature bonding reliability of sintered nano-silver joint on bare copper plate. Microelectron Reliab 55:2524–2531CrossRef
17.
go back to reference Chua S, Siow KS (2016) Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J Alloys Compd 687:486–498CrossRef Chua S, Siow KS (2016) Microstructural studies and bonding strength of pressureless sintered nano-silver joints on silver, direct bond copper (DBC) and copper substrates aged at 300 °C. J Alloys Compd 687:486–498CrossRef
18.
go back to reference Paknejad SA, Dumas G, West G, Lewis G, Mannan SH (2014) Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates. J Alloys Compd 617:994–1001CrossRef Paknejad SA, Dumas G, West G, Lewis G, Mannan SH (2014) Microstructure evolution during 300 °C storage of sintered Ag nanoparticles on Ag and Au substrates. J Alloys Compd 617:994–1001CrossRef
19.
go back to reference Subramanian P, Perepezko J (1993) The Ag–Cu (silver–copper) system. J Phase Equilib 14:62–75CrossRef Subramanian P, Perepezko J (1993) The Ag–Cu (silver–copper) system. J Phase Equilib 14:62–75CrossRef
20.
go back to reference Tu P, Chan YC, Lai J (1997) Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Trans Compon Packag Manuf Technol B 20:87–93CrossRef Tu P, Chan YC, Lai J (1997) Effect of intermetallic compounds on the thermal fatigue of surface mount solder joints. IEEE Trans Compon Packag Manuf Technol B 20:87–93CrossRef
21.
go back to reference Lee CC and Cheng L (2014) The quantum theory of solid-state atomic bonding. In 2014 IEEE 64th electronic components and technology conference (ECTC). IEEE, pp 1335–1341 Lee CC and Cheng L (2014) The quantum theory of solid-state atomic bonding. In 2014 IEEE 64th electronic components and technology conference (ECTC). IEEE, pp 1335–1341
22.
go back to reference Tofteberg HR, Schjølberg-Henriksen K, Fasting EJ, Moen AS, Taklo MM, Poppe EU et al (2014) Wafer-level Au–Au bonding in the 350–450° C temperature range. J Micromech Microeng 24:084002CrossRef Tofteberg HR, Schjølberg-Henriksen K, Fasting EJ, Moen AS, Taklo MM, Poppe EU et al (2014) Wafer-level Au–Au bonding in the 350–450° C temperature range. J Micromech Microeng 24:084002CrossRef
23.
go back to reference Chen G, Feng Z, Chen J, Liu L, Li H, Liu Q et al (2017) Analytical approach for describing the collapse of surface asperities under compressive stress during rapid solid state bonding. Scripta Mater 128:41–44CrossRef Chen G, Feng Z, Chen J, Liu L, Li H, Liu Q et al (2017) Analytical approach for describing the collapse of surface asperities under compressive stress during rapid solid state bonding. Scripta Mater 128:41–44CrossRef
24.
go back to reference Humphreys F (1997) A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater 45:4231–4240CrossRef Humphreys F (1997) A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater 45:4231–4240CrossRef
25.
go back to reference Callister WD, Rethwisch DG (2012) Fundamentals of materials science and engineering: an integrated approach. Wiley, Hoboken, pp 279–283 Callister WD, Rethwisch DG (2012) Fundamentals of materials science and engineering: an integrated approach. Wiley, Hoboken, pp 279–283
26.
go back to reference Dieter GE, Bacon DJ (1986) Mechanical metallurgy. McGraw-Hill, New York, pp 231–233 Dieter GE, Bacon DJ (1986) Mechanical metallurgy. McGraw-Hill, New York, pp 231–233
28.
go back to reference Lee CC, Wang DT, Choi WS (2006) Design and construction of a compact vacuum furnace for scientific research. Rev Sci Instrum 77:125104CrossRef Lee CC, Wang DT, Choi WS (2006) Design and construction of a compact vacuum furnace for scientific research. Rev Sci Instrum 77:125104CrossRef
29.
go back to reference JESD22-A103E, High temperature storage life, JEDEC, 2015 JESD22-A103E, High temperature storage life, JEDEC, 2015
30.
go back to reference Dillamore IL, Roberts WT (1964) Rolling textures in f.c.c. and b.c.c. metals. Acta Metall 12:281–293CrossRef Dillamore IL, Roberts WT (1964) Rolling textures in f.c.c. and b.c.c. metals. Acta Metall 12:281–293CrossRef
31.
go back to reference MIL-STD-883H Method 2019.8, Die shear strength, Department of Defense, 2010 MIL-STD-883H Method 2019.8, Die shear strength, Department of Defense, 2010
32.
go back to reference Bukaluk A (1990) AES depth profile studies of interdiffusion in the Ag-Cu bilayer and multilayer thin films. Phys Status Solidi A 118:99–107CrossRef Bukaluk A (1990) AES depth profile studies of interdiffusion in the Ag-Cu bilayer and multilayer thin films. Phys Status Solidi A 118:99–107CrossRef
33.
go back to reference Hartung F, Schmitz G (2001) Interdiffusion and reaction of metals: the influence and relaxation of mismatch-induced stress. Phys Rev B 64:245418CrossRef Hartung F, Schmitz G (2001) Interdiffusion and reaction of metals: the influence and relaxation of mismatch-induced stress. Phys Rev B 64:245418CrossRef
Metadata
Title
Low-pressure solid-state bonding technology using fine-grained silver foils for high-temperature electronics
Authors
Jiaqi Wu
Chin C. Lee
Publication date
12-10-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 4/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1689-y

Other articles of this Issue 4/2018

Journal of Materials Science 4/2018 Go to the issue

Premium Partners