Skip to main content
Top
Published in: Acta Mechanica 5/2020

03-02-2020 | Original Paper

An accurate method for guided wave propagation in multilayered anisotropic piezoelectric structures

Authors: Qiang Gao, Yanhui Zhang

Published in: Acta Mechanica | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The purpose of this paper is to extend and generalize the precise integration method (PIM) and the Wittrick–Williams (W–W) algorithm to analyze the dispersion of guided waves in multilayered anisotropic piezoelectric structures. The analysis shows that the W–W algorithm cannot be directly applied to piezoelectric materials. This is due to the fact that a submatrix of the Hamiltonian matrix is not positive definite for piezoelectric materials such that the eigenvalue count of sublayers is not zero when the divided sublayers are sufficiently small. The reason for this issue is explored by a theoretical analysis, and then, a symplectic transformation is introduced to ensure that the W–W algorithm can conveniently be applied to solve wave propagation problems in multilayered anisotropic piezoelectric structures. The present method not only guarantees that the computation is accurate and stable, but also finds all eigenfrequencies without being missed. Three numerical examples are provided to illustrate the performance of the method, and the results obtained by the method are compared with the published results and the results obtained by the semi-analytical finite element method. The effects of boundary conditions, wave propagation direction, thickness ratios and stacking sequences on the dispersion behavior of guided waves are discussed.
Literature
1.
go back to reference Staszewski, W., Boller, C., Tomlinson, G.R.: Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. Wiley, London (2004) Staszewski, W., Boller, C., Tomlinson, G.R.: Health Monitoring of Aerospace Structures: Smart Sensor Technologies and Signal Processing. Wiley, London (2004)
2.
go back to reference Raghavan, A., Cesnik, C.E.S.: Review of guided wave structural health monitoring. Shock Vib. 39, 91–116 (2007) Raghavan, A., Cesnik, C.E.S.: Review of guided wave structural health monitoring. Shock Vib. 39, 91–116 (2007)
3.
go back to reference Huan, Q., Chen, M.T., Su, Z.Q., Li, F.X.: A high-resolution structural health monitoring system based on SH wave piezoelectric transducers phased array. Ultrasonics 97, 29–37 (2019) Huan, Q., Chen, M.T., Su, Z.Q., Li, F.X.: A high-resolution structural health monitoring system based on SH wave piezoelectric transducers phased array. Ultrasonics 97, 29–37 (2019)
4.
go back to reference Chen, W.Q., Ding, H.J., Xu, R.Q.: Three-dimensional static analysis of multi-layered piezoelectric hollow spheres via the state space method. Int. J. Solids Struct. 38, 4921–4936 (2001)MATH Chen, W.Q., Ding, H.J., Xu, R.Q.: Three-dimensional static analysis of multi-layered piezoelectric hollow spheres via the state space method. Int. J. Solids Struct. 38, 4921–4936 (2001)MATH
5.
go back to reference Ding, H.J., Chen, W.Q., Xu, R.Q.: New state space formulations for transversely isotropic piezoelasticity with application. Mech. Res. Commun. 27, 319–326 (2000)MATH Ding, H.J., Chen, W.Q., Xu, R.Q.: New state space formulations for transversely isotropic piezoelasticity with application. Mech. Res. Commun. 27, 319–326 (2000)MATH
6.
go back to reference Li, X.Y., Wu, J., Ding, H.J., Chen, W.Q.: 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending. Int. J. Eng. Sci. 49, 664–676 (2011) Li, X.Y., Wu, J., Ding, H.J., Chen, W.Q.: 3D analytical solution for a functionally graded transversely isotropic piezoelectric circular plate under tension and bending. Int. J. Eng. Sci. 49, 664–676 (2011)
7.
go back to reference Heyliger, P., Saravanos, D.A.: Exact free-vibration analysis of laminated plates with embedded piezoelectric layers. J. Acoust. Soc. Am. 98, 1547–1557 (1995) Heyliger, P., Saravanos, D.A.: Exact free-vibration analysis of laminated plates with embedded piezoelectric layers. J. Acoust. Soc. Am. 98, 1547–1557 (1995)
8.
go back to reference Saravanos, D.A.: Damped vibration of composite plates with passive piezoelectric-resistor elements. J. Sound Vib. 221, 867–885 (1999) Saravanos, D.A.: Damped vibration of composite plates with passive piezoelectric-resistor elements. J. Sound Vib. 221, 867–885 (1999)
9.
go back to reference Du, J.K., Jin, X.Y., Wang, J., Xian, K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46, 13–22 (2007) Du, J.K., Jin, X.Y., Wang, J., Xian, K.: Love wave propagation in functionally graded piezoelectric material layer. Ultrasonics 46, 13–22 (2007)
10.
go back to reference Farsangi, M.A.A., Saidi, A.R., Batra, R.: Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332, 5981–5998 (2013) Farsangi, M.A.A., Saidi, A.R., Batra, R.: Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332, 5981–5998 (2013)
11.
go back to reference Nirwal, S., Sahu, S.A., Baroi, J., Singh, A.: Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect. Compos. B Eng. 167, 434–447 (2019) Nirwal, S., Sahu, S.A., Baroi, J., Singh, A.: Analysis of different boundary types on wave velocity in bedded piezo-structure with flexoelectric effect. Compos. B Eng. 167, 434–447 (2019)
12.
go back to reference Wang, Y.Z., Li, F.M., Huang, W.H., Wang, Y.S.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)MATH Wang, Y.Z., Li, F.M., Huang, W.H., Wang, Y.S.: The propagation and localization of Rayleigh waves in disordered piezoelectric phononic crystals. J. Mech. Phys. Solids 56, 1578–1590 (2008)MATH
13.
go back to reference Guo, X., Wei, P.J.: Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with initial stresses. Int. J. Mech. Sci. 106, 231–244 (2016) Guo, X., Wei, P.J.: Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with initial stresses. Int. J. Mech. Sci. 106, 231–244 (2016)
14.
go back to reference Wang, L., Rokhlin, S.I.: Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39, 413–424 (2001) Wang, L., Rokhlin, S.I.: Stable reformulation of transfer matrix method for wave propagation in layered anisotropic media. Ultrasonics 39, 413–424 (2001)
15.
go back to reference Wang, L., Rokhlin, S.I.: Recursive asymptotic stiffness matrix method for analysis of surface acoustic wave devices on layered piezoelectric media. Appl. Phys. Lett. 81, 4049–4051 (2002) Wang, L., Rokhlin, S.I.: Recursive asymptotic stiffness matrix method for analysis of surface acoustic wave devices on layered piezoelectric media. Appl. Phys. Lett. 81, 4049–4051 (2002)
16.
go back to reference Wang, L., Rokhlin, S.I.: Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1060–1071 (2004) Wang, L., Rokhlin, S.I.: Modeling of wave propagation in layered piezoelectric media by a recursive asymptotic method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1060–1071 (2004)
17.
go back to reference Collet, B.: Recursive surface impedance matrix methods for ultrasonic wave propagation in piezoelectric multilayers. Ultrasonics 42, 189–197 (2004) Collet, B.: Recursive surface impedance matrix methods for ultrasonic wave propagation in piezoelectric multilayers. Ultrasonics 42, 189–197 (2004)
18.
go back to reference Piliposyan, D.G., Piliposian, G.T., Ghazaryan, K.B.: Propagation and control of shear waves in piezoelectric composite waveguides with metallized interfaces. Int. J. Solids Struct. 106, 119–128 (2017) Piliposyan, D.G., Piliposian, G.T., Ghazaryan, K.B.: Propagation and control of shear waves in piezoelectric composite waveguides with metallized interfaces. Int. J. Solids Struct. 106, 119–128 (2017)
19.
go back to reference Yan, D.J., Chen, A.L., Wang, Y.S., Zhang, C.Z., Golub, M.: In-plane elastic wave propagation in nanoscale periodic layered piezoelectric structures. Int. J. Mech. Sci. 142, 276–288 (2018) Yan, D.J., Chen, A.L., Wang, Y.S., Zhang, C.Z., Golub, M.: In-plane elastic wave propagation in nanoscale periodic layered piezoelectric structures. Int. J. Mech. Sci. 142, 276–288 (2018)
20.
go back to reference Chen, A.L., Yan, D.J., Wang, Y.S., Zhang, C.Z.: In-plane elastic wave propagation in nanoscale periodic piezoelectric/piezomagnetic laminates. Int. J. Mech. Sci. 153, 416–429 (2019) Chen, A.L., Yan, D.J., Wang, Y.S., Zhang, C.Z.: In-plane elastic wave propagation in nanoscale periodic piezoelectric/piezomagnetic laminates. Int. J. Mech. Sci. 153, 416–429 (2019)
21.
go back to reference Sorohan, Ş., Constantin, N., Găvan, M., Anghel, V.: Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. Ultrasonics 51, 503–515 (2011) Sorohan, Ş., Constantin, N., Găvan, M., Anghel, V.: Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. Ultrasonics 51, 503–515 (2011)
22.
go back to reference Hofer, M., Finger, N., Kovacs, G., Schoberl, J., Zaglmayr, S., Langer, U., Lerch, R.: Finite-element simulation of wave propagation in periodic piezoelectric SAW structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1192–1201 (2006) Hofer, M., Finger, N., Kovacs, G., Schoberl, J., Zaglmayr, S., Langer, U., Lerch, R.: Finite-element simulation of wave propagation in periodic piezoelectric SAW structures. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1192–1201 (2006)
23.
go back to reference Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76, 347–363 (2000) Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. Struct. 76, 347–363 (2000)
24.
go back to reference Hayashi, T., Song, W.J., Rose, J.L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003) Hayashi, T., Song, W.J., Rose, J.L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41, 175–183 (2003)
25.
go back to reference Kalkowski, M., Rustighi, E., Waters, T.P.: Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method. Comput. Struct. 173, 174–186 (2016) Kalkowski, M., Rustighi, E., Waters, T.P.: Modelling piezoelectric excitation in waveguides using the semi-analytical finite element method. Comput. Struct. 173, 174–186 (2016)
26.
go back to reference Sharma, K., Bui, T.Q., Zhang, C.Z., Bhargava, R.R.: Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Eng. Fract. Mech. 104, 114–139 (2013) Sharma, K., Bui, T.Q., Zhang, C.Z., Bhargava, R.R.: Analysis of a subinterface crack in piezoelectric bimaterials with the extended finite element method. Eng. Fract. Mech. 104, 114–139 (2013)
27.
go back to reference Liang, Y.J., Li, Y.Y., Liu, Y.J., Han, Q., Liu, D.Z.: Investigation of wave propagation in piezoelectric helical waveguides with the spectral finite element method. Compos. B Eng. 160, 205–216 (2019) Liang, Y.J., Li, Y.Y., Liu, Y.J., Han, Q., Liu, D.Z.: Investigation of wave propagation in piezoelectric helical waveguides with the spectral finite element method. Compos. B Eng. 160, 205–216 (2019)
28.
go back to reference Gravenkamp, H., Birk, C., Song, C.M.: Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J. Comput. Phys. 295, 438–455 (2015)MathSciNetMATH Gravenkamp, H., Birk, C., Song, C.M.: Simulation of elastic guided waves interacting with defects in arbitrarily long structures using the scaled boundary finite element method. J. Comput. Phys. 295, 438–455 (2015)MathSciNetMATH
29.
go back to reference Amor, M.B., Ghozlen, M.H.B.: Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method. Ultrasonics 55, 10–14 (2015) Amor, M.B., Ghozlen, M.H.B.: Lamb waves propagation in functionally graded piezoelectric materials by Peano-series method. Ultrasonics 55, 10–14 (2015)
30.
go back to reference Yu, J.G., Lefebvre, J.E., Guo, Y.Q.: Wave propagation in multilayered piezoelectric spherical plates. Acta Mech. 224, 1335–1349 (2013)MathSciNetMATH Yu, J.G., Lefebvre, J.E., Guo, Y.Q.: Wave propagation in multilayered piezoelectric spherical plates. Acta Mech. 224, 1335–1349 (2013)MathSciNetMATH
31.
go back to reference Yu, J.G., Lefebvre, J.E., Xu, W.J., Benmeddour, F., Zhang, X.M.: Propagating and non-propagating waves in infinite plates and rectangular cross section plates: orthogonal polynomial approach. Acta Mech. 228, 3755–3769 (2017)MathSciNetMATH Yu, J.G., Lefebvre, J.E., Xu, W.J., Benmeddour, F., Zhang, X.M.: Propagating and non-propagating waves in infinite plates and rectangular cross section plates: orthogonal polynomial approach. Acta Mech. 228, 3755–3769 (2017)MathSciNetMATH
32.
go back to reference Zhang, B., Yu, J.G., Wang, Y.C., Li, L.J., Zhang, X.M.: Complete guided wave modes in piezoelectric cylindrical structures with fan-shaped cross section using the modified double orthogonal polynomial series method. Acta Mech. 230, 367–380 (2019)MathSciNet Zhang, B., Yu, J.G., Wang, Y.C., Li, L.J., Zhang, X.M.: Complete guided wave modes in piezoelectric cylindrical structures with fan-shaped cross section using the modified double orthogonal polynomial series method. Acta Mech. 230, 367–380 (2019)MathSciNet
34.
go back to reference Wittrick, W.H., Williams, F.W.: A general algorithm for computing natural frequencies of elastic structures. Q. J. Mech. Appl. Math. 24, 263–284 (1971)MathSciNetMATH Wittrick, W.H., Williams, F.W.: A general algorithm for computing natural frequencies of elastic structures. Q. J. Mech. Appl. Math. 24, 263–284 (1971)MathSciNetMATH
35.
go back to reference Zhong, W.X., Williams, F.W., Bennett, P.N.: Extension of the Wittrick–Williams algorithm to mixed variable systems. ASME J. Vib. Acoust. 119, 334–340 (1997) Zhong, W.X., Williams, F.W., Bennett, P.N.: Extension of the Wittrick–Williams algorithm to mixed variable systems. ASME J. Vib. Acoust. 119, 334–340 (1997)
36.
go back to reference Zhong, W.X., Howson, W.P., Williams, F.W.: Precise solutions for surface wave propagation in stratified material. ASME J. Vib. Acoust. 123, 198–204 (2001) Zhong, W.X., Howson, W.P., Williams, F.W.: Precise solutions for surface wave propagation in stratified material. ASME J. Vib. Acoust. 123, 198–204 (2001)
37.
go back to reference Gao, Q., Zhong, W.X., Howson, W.P.: A precise method for solving wave propagation problems in layered anisotropic media. Wave Motion 40, 191–207 (2004)MATH Gao, Q., Zhong, W.X., Howson, W.P.: A precise method for solving wave propagation problems in layered anisotropic media. Wave Motion 40, 191–207 (2004)MATH
38.
go back to reference Gao, Q., Lin, J.H., Zhong, W.X., Howson, W.P., Williams, F.W.: A precise numerical method for Rayleigh waves in a stratified half space. Int. J. Numer. Methods Eng. 67, 771–786 (2006)MATH Gao, Q., Lin, J.H., Zhong, W.X., Howson, W.P., Williams, F.W.: A precise numerical method for Rayleigh waves in a stratified half space. Int. J. Numer. Methods Eng. 67, 771–786 (2006)MATH
39.
go back to reference Gao, Q., Zhang, Y.H.: Stable and accurate computation of dispersion relations for layered waveguides, semi-infinite spaces and infinite spaces. ASME J. Vib. Acoust. 141, 031012 (2019) Gao, Q., Zhang, Y.H.: Stable and accurate computation of dispersion relations for layered waveguides, semi-infinite spaces and infinite spaces. ASME J. Vib. Acoust. 141, 031012 (2019)
40.
go back to reference El-Kaabazi, N., Kennedy, D.: Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the Wittrick–Williams algorithm. Comput. Struct. 104, 4–12 (2012) El-Kaabazi, N., Kennedy, D.: Calculation of natural frequencies and vibration modes of variable thickness cylindrical shells using the Wittrick–Williams algorithm. Comput. Struct. 104, 4–12 (2012)
41.
go back to reference Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic Elasticity. World Scientific Publishing, Singapore (2009)MATH Yao, W.A., Zhong, W.X., Lim, C.W.: Symplectic Elasticity. World Scientific Publishing, Singapore (2009)MATH
42.
go back to reference Yang, J.S.: Special Topics in the Theory of Piezoelectricity. Springer, New York (2010) Yang, J.S.: Special Topics in the Theory of Piezoelectricity. Springer, New York (2010)
43.
go back to reference Royer, D., Dieulesaint, E.: Elastic Waves in Solids I: Free and Guided Propagation. Springer, New York (2000)MATH Royer, D., Dieulesaint, E.: Elastic Waves in Solids I: Free and Guided Propagation. Springer, New York (2000)MATH
44.
go back to reference Guo, Y.Q., Chen, W.Q., Zhang, Y.L.: Guided wave propagation in multilayered piezoelectric structures. Sci. China Ser. G. 52, 1094–1104 (2009) Guo, Y.Q., Chen, W.Q., Zhang, Y.L.: Guided wave propagation in multilayered piezoelectric structures. Sci. China Ser. G. 52, 1094–1104 (2009)
45.
go back to reference Wang, L., Rokhlin, S.I.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. J. Mech. Phys. Solids 52, 2473–2506 (2004)MathSciNetMATH Wang, L., Rokhlin, S.I.: Recursive geometric integrators for wave propagation in a functionally graded multilayered elastic medium. J. Mech. Phys. Solids 52, 2473–2506 (2004)MathSciNetMATH
46.
go back to reference Zhu, F., Wang, B., Qian, Z.H., Pan, E.: Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates. Int. J. Solids Struct. 150, 52–65 (2018) Zhu, F., Wang, B., Qian, Z.H., Pan, E.: Accurate characterization of 3D dispersion curves and mode shapes of waves propagating in generally anisotropic viscoelastic/elastic plates. Int. J. Solids Struct. 150, 52–65 (2018)
47.
go back to reference Yuan, S., Ye, K., Xiao, C., Kennedy, D., Williams, F.W.: Solution of regular second- and fourth-order Sturm–Liouville problems by exact dynamic stiffness method analogy. J. Eng. Math. 86, 157–173 (2014)MathSciNetMATH Yuan, S., Ye, K., Xiao, C., Kennedy, D., Williams, F.W.: Solution of regular second- and fourth-order Sturm–Liouville problems by exact dynamic stiffness method analogy. J. Eng. Math. 86, 157–173 (2014)MathSciNetMATH
48.
go back to reference Liu, X., Banerjee, J.R.: An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies—part I: theory. Compos. Struct. 132, 1274–1287 (2015) Liu, X., Banerjee, J.R.: An exact spectral-dynamic stiffness method for free flexural vibration analysis of orthotropic composite plate assemblies—part I: theory. Compos. Struct. 132, 1274–1287 (2015)
49.
go back to reference Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1996)MATH Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 2nd edn. Cambridge University Press, New York (1996)MATH
50.
go back to reference Chen, J.Y., Pan, E., Chen, H.I.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 44, 1073–1085 (2007)MATH Chen, J.Y., Pan, E., Chen, H.I.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 44, 1073–1085 (2007)MATH
51.
go back to reference Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)MATH Yang, J.S.: An Introduction to the Theory of Piezoelectricity. Springer, New York (2005)MATH
Metadata
Title
An accurate method for guided wave propagation in multilayered anisotropic piezoelectric structures
Authors
Qiang Gao
Yanhui Zhang
Publication date
03-02-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 5/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02619-5

Other articles of this Issue 5/2020

Acta Mechanica 5/2020 Go to the issue

Premium Partners