Skip to main content
Top
Published in: Acta Mechanica 5/2020

18-02-2020 | Original Paper

Chemo-mechanical coupling and material evolution in finitely deforming solids with advancing fronts of reactive fluids

Authors: Marcelino Anguiano, Harishanker Gajendran, Richard B. Hall, Kumbakonam R. Rajagopal, Arif Masud

Published in: Acta Mechanica | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new stabilized method is presented for coupled chemo-mechanical problems involving chemically reacting fluids flowing through deformable elastic solids. A mixture theory model is employed wherein kinematics is represented via an independent set of balance laws for each of the interacting constituents. A significant feature of the mixture model is the interactive force field in the momentum balance equations that couples the constituents implicitly at the level of the governing system of equations. The constitutive relations for the constituents in the mixture model are based on maximization of the rate of entropy production. Since each constituent is not discretely modeled and the interactive effects are mathematically coupled at the local continuum level, the resulting system serves as a physics-based reduced-order model for the complex microstructure of the material system. When constitutive equations are substituted into the balance laws, they give rise to a system of coupled nonlinear PDEs. Evolving nonlinearity and coupled chemo-mechanical effects give rise to spatially localized phenomena, namely boundary layers, shear bands, and steep gradients that appear at the reaction fronts. For large reaction rates, the balance of mass of the fluid becomes a singularly perturbed equation (reaction-dominated), which may exhibit boundary and/or internal layers. Likewise, for large reaction rates and/or low diffusivity, the balance of linear momentum for the fluid constituent also becomes a singularly perturbed PDE. Presence of these features in the solution requires stable numerical methods, and we present a variational multiscale (VMS)-based stabilized finite element method for the initial-boundary value problem. Mathematical attributes of the method are investigated via a range of numerical test cases that involve diffusion of chemically reacting fluids through nonlinear elastic solids. Enhanced stabilization features and higher spatial accuracy of the models and the methods are highlighted.
Appendix
Available only for authorised users
Literature
1.
go back to reference Truster, T.J., Masud, A.: A unified mixture formulation for density and volumetric growth of multi-constituent solids in tissue engineering. Comput. Methods Appl. Mech. Eng. 314, 222–268 (2017)MathSciNetCrossRef Truster, T.J., Masud, A.: A unified mixture formulation for density and volumetric growth of multi-constituent solids in tissue engineering. Comput. Methods Appl. Mech. Eng. 314, 222–268 (2017)MathSciNetCrossRef
2.
go back to reference Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods Appl. Sci. 12, 407–430 (2002)MathSciNetCrossRef Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Model. Methods Appl. Sci. 12, 407–430 (2002)MathSciNetCrossRef
3.
go back to reference Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech. Model. Mechanobiol. 2, 109–126 (2003)CrossRef Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech. Model. Mechanobiol. 2, 109–126 (2003)CrossRef
4.
go back to reference Yuan, P., McCracken, J.M., Gross, D.E., Braun, P.V., Moore, J.S., Nuzzo, R.G.: A programmable soft chemo-mechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. Soft Matter 13, 7312–7317 (2017)CrossRef Yuan, P., McCracken, J.M., Gross, D.E., Braun, P.V., Moore, J.S., Nuzzo, R.G.: A programmable soft chemo-mechanical actuator exploiting a catalyzed photochemical water-oxidation reaction. Soft Matter 13, 7312–7317 (2017)CrossRef
5.
go back to reference Haberman, B.A., Young, J.B.: Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transf. 47, 3617–3629 (2004)CrossRef Haberman, B.A., Young, J.B.: Three-dimensional simulation of chemically reacting gas flows in the porous support structure of an integrated-planar solid oxide fuel cell. Int. J. Heat Mass Transf. 47, 3617–3629 (2004)CrossRef
6.
go back to reference Bishop, S.R.: Chemical expansion of solid oxide fuel cell materials: a brief overview. Acta Mech. Sin. 29, 312–317 (2013)CrossRef Bishop, S.R.: Chemical expansion of solid oxide fuel cell materials: a brief overview. Acta Mech. Sin. 29, 312–317 (2013)CrossRef
7.
go back to reference Rao, V.S., Hughes, T.J.R.: On modelling thermal oxidation of silicon I: theory. Int. J. Numer. Methods Eng. 47, 341–358 (2000)CrossRef Rao, V.S., Hughes, T.J.R.: On modelling thermal oxidation of silicon I: theory. Int. J. Numer. Methods Eng. 47, 341–358 (2000)CrossRef
8.
go back to reference Lofaj, F., Kaganovskii, Y.S.: Kinetics of WC-Co oxidation accompanied by swelling. J. Mater. Sci. 30, 1811–1817 (1995)CrossRef Lofaj, F., Kaganovskii, Y.S.: Kinetics of WC-Co oxidation accompanied by swelling. J. Mater. Sci. 30, 1811–1817 (1995)CrossRef
9.
go back to reference Merzouki, T., Blond, E., Schmitt, N., Bouchetou, M.-L., Cutard, T., Gasser, A.: Modelling of the swelling induced by oxidation in SiC-based refractory castables. Mech. Mater. 68, 253–266 (2014)CrossRef Merzouki, T., Blond, E., Schmitt, N., Bouchetou, M.-L., Cutard, T., Gasser, A.: Modelling of the swelling induced by oxidation in SiC-based refractory castables. Mech. Mater. 68, 253–266 (2014)CrossRef
10.
go back to reference Merzouki, T., Blond, E., Schmitt, N.: Numerical study of the effects of refractory lining geometries on the swelling induced by oxidation. Finite Elem. Anal. Des. 108, 66–80 (2016)CrossRef Merzouki, T., Blond, E., Schmitt, N.: Numerical study of the effects of refractory lining geometries on the swelling induced by oxidation. Finite Elem. Anal. Des. 108, 66–80 (2016)CrossRef
11.
go back to reference Munro, R.G., Dapkunas, S.J.: Corrosion characteristics of silicon carbide and silicon nitride. J. Res. Natl. Inst. Stand. Technol. 98, 607–631 (1993)CrossRef Munro, R.G., Dapkunas, S.J.: Corrosion characteristics of silicon carbide and silicon nitride. J. Res. Natl. Inst. Stand. Technol. 98, 607–631 (1993)CrossRef
12.
go back to reference Yang, H., Fan, F., Liang, W., Guo, X., Zhu, T., Zhang, S.: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids. 70, 349–361 (2014)CrossRef Yang, H., Fan, F., Liang, W., Guo, X., Zhu, T., Zhang, S.: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids. 70, 349–361 (2014)CrossRef
13.
go back to reference Hall, R., Gajendran, H., Masud, A.: Diffusion of chemically reacting fluids through nonlinear elastic solids: mixture model and stabilized methods. Math. Mech. Solids 20, 204–227 (2015)MathSciNetCrossRef Hall, R., Gajendran, H., Masud, A.: Diffusion of chemically reacting fluids through nonlinear elastic solids: mixture model and stabilized methods. Math. Mech. Solids 20, 204–227 (2015)MathSciNetCrossRef
14.
go back to reference Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)MathSciNetCrossRef Hughes, T.J.R.: Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Eng. 127, 387–401 (1995)MathSciNetCrossRef
15.
go back to reference Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method–a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRef Hughes, T.J.R., Feijóo, G.R., Mazzei, L., Quincy, J.-B.: The variational multiscale method–a paradigm for computational mechanics. Comput. Methods Appl. Mech. Eng. 166, 3–24 (1998)MathSciNetCrossRef
16.
go back to reference Brezzi, F., Franca, L.P., Hughes, T.J.R., Russo, A.: \(b = int( g )\). Comput. Methods Appl. Mech. Eng. 145, 329–339 (1997)CrossRef Brezzi, F., Franca, L.P., Hughes, T.J.R., Russo, A.: \(b = int( g )\). Comput. Methods Appl. Mech. Eng. 145, 329–339 (1997)CrossRef
17.
18.
go back to reference Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III, pp. 1–127. Elsevier, Amsterdam (1976) Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics, vol. III, pp. 1–127. Elsevier, Amsterdam (1976)
19.
go back to reference Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–244 (1976)MathSciNetCrossRef Atkin, R.J., Craine, R.E.: Continuum theories of mixtures: basic theory and historical development. Q. J. Mech. Appl. Math. 29, 209–244 (1976)MathSciNetCrossRef
20.
go back to reference Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World scientific, Singapore (1995)CrossRef Rajagopal, K.R., Tao, L.: Mechanics of Mixtures. World scientific, Singapore (1995)CrossRef
21.
go back to reference Samohýl, I.: Thermodynamics of Irreversible Processes in Fluid Mixtures: Approached by Rational Thermodynamics, 1st edn. B.G. Teubner, Leipzig (1987)MATH Samohýl, I.: Thermodynamics of Irreversible Processes in Fluid Mixtures: Approached by Rational Thermodynamics, 1st edn. B.G. Teubner, Leipzig (1987)MATH
22.
go back to reference Franca, L.P., Dutra Do Carmo, E.G.: The Galerkin gradient least-squares method. Comput. Methods Appl. Mech. Eng. 74, 41–54 (1989)MathSciNetCrossRef Franca, L.P., Dutra Do Carmo, E.G.: The Galerkin gradient least-squares method. Comput. Methods Appl. Mech. Eng. 74, 41–54 (1989)MathSciNetCrossRef
23.
go back to reference Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156, 185–210 (1998)MathSciNetCrossRef Codina, R.: Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comput. Methods Appl. Mech. Eng. 156, 185–210 (1998)MathSciNetCrossRef
24.
go back to reference Hauke, G., García-Olivares, A.: Variational subgrid scale formulations for the advection-diffusion-reaction equation. Comput. Methods Appl. Mech. Eng. 190, 6847–6865 (2001)MathSciNetCrossRef Hauke, G., García-Olivares, A.: Variational subgrid scale formulations for the advection-diffusion-reaction equation. Comput. Methods Appl. Mech. Eng. 190, 6847–6865 (2001)MathSciNetCrossRef
25.
go back to reference Fernando, H., Harder, C., Paredes, D., Valentin, F.: Numerical multiscale methods for a reaction-dominated model. Comput. Methods Appl. Mech. Eng. 201–204, 228–244 (2012)MathSciNetCrossRef Fernando, H., Harder, C., Paredes, D., Valentin, F.: Numerical multiscale methods for a reaction-dominated model. Comput. Methods Appl. Mech. Eng. 201–204, 228–244 (2012)MathSciNetCrossRef
26.
go back to reference Dutra do Carmo, E.G., Alvarez, G.B., Rochinha, F.A., Loula, A.F.D.: Galerkin projected residual method applied to diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 197, 4559–4570 (2008)MathSciNetCrossRef Dutra do Carmo, E.G., Alvarez, G.B., Rochinha, F.A., Loula, A.F.D.: Galerkin projected residual method applied to diffusion–reaction problems. Comput. Methods Appl. Mech. Eng. 197, 4559–4570 (2008)MathSciNetCrossRef
27.
go back to reference Masud, A.: Preface. Comput. Methods Appl. Mech. Eng. 193, iii–iv (2004) Masud, A.: Preface. Comput. Methods Appl. Mech. Eng. 193, iii–iv (2004)
28.
go back to reference Hall, R., Rajagopal, K.R.: Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Math. Mech. Solids 17, 131–164 (2012)MathSciNetCrossRef Hall, R., Rajagopal, K.R.: Diffusion of a fluid through an anisotropically chemically reacting thermoelastic body within the context of mixture theory. Math. Mech. Solids 17, 131–164 (2012)MathSciNetCrossRef
29.
go back to reference Masud, A., Khurram, R.A.: A multiscale finite element method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195, 1750–1777 (2006)MathSciNetCrossRef Masud, A., Khurram, R.A.: A multiscale finite element method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 195, 1750–1777 (2006)MathSciNetCrossRef
30.
go back to reference Masud, A., Calderer, R.: A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200, 2577–2593 (2011)MathSciNetCrossRef Masud, A., Calderer, R.: A variational multiscale method for incompressible turbulent flows: bubble functions and fine scale fields. Comput. Methods Appl. Mech. Eng. 200, 2577–2593 (2011)MathSciNetCrossRef
31.
go back to reference Hay, R.S.: Growth stress in \(\text{ SiO }_2\) during oxidation of SiC fibers. J. Appl. Phys. 111, 063527 (2012)CrossRef Hay, R.S.: Growth stress in \(\text{ SiO }_2\) during oxidation of SiC fibers. J. Appl. Phys. 111, 063527 (2012)CrossRef
32.
go back to reference Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S., Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329–377 (2007)CrossRef Snead, L.L., Nozawa, T., Katoh, Y., Byun, T.S., Kondo, S., Petti, D.A.: Handbook of SiC properties for fuel performance modeling. J. Nucl. Mater. 371, 329–377 (2007)CrossRef
33.
go back to reference Kajihara, K., Kamioka, H., Hirano, M., Miura, T., Skuja, L., Hosono, H.: Interstitial oxygen molecules in amorphous \(\text{ SiO }_2\). III. Measurements of dissolution kinetics, diffusion coefficient, and solubility by infrared photoluminescence. J. Appl. Phys. 98, 013529 (2005)CrossRef Kajihara, K., Kamioka, H., Hirano, M., Miura, T., Skuja, L., Hosono, H.: Interstitial oxygen molecules in amorphous \(\text{ SiO }_2\). III. Measurements of dissolution kinetics, diffusion coefficient, and solubility by infrared photoluminescence. J. Appl. Phys. 98, 013529 (2005)CrossRef
34.
go back to reference Song, Y., Dhar, S., Feldman, L.C., Chung, G., Williams, J.R.: Modified Deal Grove model for the thermal oxidation of silicon carbide. J. Appl. Phys. 95, 4953–4957 (2004)CrossRef Song, Y., Dhar, S., Feldman, L.C., Chung, G., Williams, J.R.: Modified Deal Grove model for the thermal oxidation of silicon carbide. J. Appl. Phys. 95, 4953–4957 (2004)CrossRef
35.
go back to reference Rao, V.S., Hughes, T.J.R., Garikipati, K.: On modelling thermal oxidation of silicon II: numerical aspects. Int. J. Numer. Methods Eng. 47, 359–377 (2000)CrossRef Rao, V.S., Hughes, T.J.R., Garikipati, K.: On modelling thermal oxidation of silicon II: numerical aspects. Int. J. Numer. Methods Eng. 47, 359–377 (2000)CrossRef
36.
go back to reference Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRef Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)MathSciNetCrossRef
37.
go back to reference Hughes, T.J.R., Mallet, M., Akira, M.: A new finite element formulation for computational fluid dynamics: II. beyond SUPG. Comput. Methods Appl. Mech. Eng. 54, 341–355 (1986)MathSciNetCrossRef Hughes, T.J.R., Mallet, M., Akira, M.: A new finite element formulation for computational fluid dynamics: II. beyond SUPG. Comput. Methods Appl. Mech. Eng. 54, 341–355 (1986)MathSciNetCrossRef
38.
go back to reference Rao, V.S.: On numerical modeling of thermal oxidation in silicon. Stanford University, Stanford (1997) Rao, V.S.: On numerical modeling of thermal oxidation in silicon. Stanford University, Stanford (1997)
Metadata
Title
Chemo-mechanical coupling and material evolution in finitely deforming solids with advancing fronts of reactive fluids
Authors
Marcelino Anguiano
Harishanker Gajendran
Richard B. Hall
Kumbakonam R. Rajagopal
Arif Masud
Publication date
18-02-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 5/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02617-7

Other articles of this Issue 5/2020

Acta Mechanica 5/2020 Go to the issue

Premium Partners