Skip to main content
Top
Published in: Acta Mechanica 5/2020

20-02-2020 | Original Paper

A four-parameter model for nonlinear stiffness of a bolted joint with non-Gaussian surfaces

Authors: Dong Wang, Zhousuo Zhang

Published in: Acta Mechanica | Issue 5/2020

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The nonlinear mechanics modeling is proposed to describe the nonlinear stiffness of the bolted joint interfaces induced by the stick-slip friction behaviors. By combining the microscale contact mechanics of the asperity interaction, the statistical analysis of the non-Gaussian surfaces is conducted to extract a four-parameter model to characterize the nonlinear softening stiffness and residual stiffness of the bolted joints. The Masing principle is then implemented to model the tangential hysteresis nonlinearity of the oscillatory loading process. Comparison with the experimental results of a lap-type bolted joint is performed to validate the proposed model and investigate the effects of the bolt preload. The results show that the proposed model can be used to simulate the nonlinear stick-slip behaviors of the bolted joint interfaces, and the prediction of the model parameters agrees well with the identification of the experimental results. Larger bolt preload will induce a larger critical stick-slip force, stronger nonlinearity, and better symmetry of the hysteresis nonlinearity, but hardly affect the residual stiffness.
Literature
1.
go back to reference Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125(1–4), 169–181 (1997)MATH Gaul, L., Lenz, J.: Nonlinear dynamics of structures assembled by bolted joints. Acta Mech. 125(1–4), 169–181 (1997)MATH
2.
go back to reference Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2016) Qin, Z., Han, Q., Chu, F.: Bolt loosening at rotating joint interface and its influence on rotor dynamics. Eng. Fail. Anal. 59, 456–466 (2016)
3.
go back to reference Qin, Z., Cui, D., Yan, S., et al.: Hysteresis modeling of clamp band joint with macro-slip. Mech. Syst. Signal Process. 66, 89–110 (2016) Qin, Z., Cui, D., Yan, S., et al.: Hysteresis modeling of clamp band joint with macro-slip. Mech. Syst. Signal Process. 66, 89–110 (2016)
4.
go back to reference Segalman, D.J., Gregory, D.L., Starr, M.J., et al.: Handbook on Dynamics of Jointed Structures. Sandia National Laboratories, Albuquerque, NM (2009) Segalman, D.J., Gregory, D.L., Starr, M.J., et al.: Handbook on Dynamics of Jointed Structures. Sandia National Laboratories, Albuquerque, NM (2009)
5.
go back to reference Ahmadian, H., Mottershead, J.E., James, S., et al.: Modelling and updating of large surface-to-surface joints in the AWE-MACE structure. Mech. Syst. Signal Process. 20(4), 868–880 (2006) Ahmadian, H., Mottershead, J.E., James, S., et al.: Modelling and updating of large surface-to-surface joints in the AWE-MACE structure. Mech. Syst. Signal Process. 20(4), 868–880 (2006)
6.
go back to reference Ghaednia, H., Wang, X., Saha, S., et al.: A review of elastic-plastic contact mechanics. Appl. Mech. Rev. 69(6), 060804 (2017) Ghaednia, H., Wang, X., Saha, S., et al.: A review of elastic-plastic contact mechanics. Appl. Mech. Rev. 69(6), 060804 (2017)
7.
go back to reference Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for partial slip behavior of spherical contacts. Int. J. Solids Struct. 47(18–19), 2554–2567 (2010)MATH Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for partial slip behavior of spherical contacts. Int. J. Solids Struct. 47(18–19), 2554–2567 (2010)MATH
8.
go back to reference Brake, M.R.W.: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Springer, Berlin (2018) Brake, M.R.W.: The Mechanics of Jointed Structures: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Springer, Berlin (2018)
9.
go back to reference Wang, D., Xu, C., Fan, X., et al.: Reduced-order modeling approach for frictional stick-slip behaviors of joint interface. Mech. Syst. Signal Process. 103, 131–138 (2018) Wang, D., Xu, C., Fan, X., et al.: Reduced-order modeling approach for frictional stick-slip behaviors of joint interface. Mech. Syst. Signal Process. 103, 131–138 (2018)
10.
go back to reference Brake, M.R.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. 49(22), 3129–3141 (2012) Brake, M.R.: An analytical elastic-perfectly plastic contact model. Int. J. Solids Struct. 49(22), 3129–3141 (2012)
11.
go back to reference Beheshti, A., Khonsari, M.: Asperity micro-contact models as applied to the deformation of rough line contact. Tribol. Int. 52(1), 61–74 (2012) Beheshti, A., Khonsari, M.: Asperity micro-contact models as applied to the deformation of rough line contact. Tribol. Int. 52(1), 61–74 (2012)
12.
go back to reference Megalingam, A., Mayuram, M.M.: Comparative contact analysis study of finite element method based deterministic, simplified multi-Asperity and modified statistical contact models. J. Tribol. 134(1), 014503 (2012) Megalingam, A., Mayuram, M.M.: Comparative contact analysis study of finite element method based deterministic, simplified multi-Asperity and modified statistical contact models. J. Tribol. 134(1), 014503 (2012)
13.
go back to reference Keer, L.M., Kim, S.H., Eberhardt, A.W., et al.: Compliance of coated elastic bodies in contact. Int. J. Solids Struct. 27(6), 681–698 (1991)MATH Keer, L.M., Kim, S.H., Eberhardt, A.W., et al.: Compliance of coated elastic bodies in contact. Int. J. Solids Struct. 27(6), 681–698 (1991)MATH
14.
go back to reference Brizmer, V., Kligerman, Y., Etsion, I.: The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. Int. J. Solids Struct. 43(18), 5736–5749 (2006)MATH Brizmer, V., Kligerman, Y., Etsion, I.: The effect of contact conditions and material properties on the elasticity terminus of a spherical contact. Int. J. Solids Struct. 43(18), 5736–5749 (2006)MATH
15.
go back to reference Vakis, A.I., Yastrebov, V.A., Scheibert, J., et al.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018) Vakis, A.I., Yastrebov, V.A., Scheibert, J., et al.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)
16.
17.
go back to reference Mindlin, R.D., Mason, W.P., Osmer, T.F., et al.: Effects of an oscillating tangential force on the contact surfaces of elastic spheres. J. Appl. Mech. 18(3), 203–208 (1951)MathSciNet Mindlin, R.D., Mason, W.P., Osmer, T.F., et al.: Effects of an oscillating tangential force on the contact surfaces of elastic spheres. J. Appl. Mech. 18(3), 203–208 (1951)MathSciNet
18.
go back to reference Johnson, K.L.: The effect of a tangential contact force on the rolling motion of an elastic sphere on a plane. J. Appl. Mech. 25, 339–346 (1958)MathSciNetMATH Johnson, K.L.: The effect of a tangential contact force on the rolling motion of an elastic sphere on a plane. J. Appl. Mech. 25, 339–346 (1958)MathSciNetMATH
19.
go back to reference Johnson, K.L.: Energy dissipation at spherical surfaces in contact transmitting oscillating forces. J. Mech. Eng. Sci. 3(4), 362–368 (1961)MathSciNet Johnson, K.L.: Energy dissipation at spherical surfaces in contact transmitting oscillating forces. J. Mech. Eng. Sci. 3(4), 362–368 (1961)MathSciNet
20.
go back to reference Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 295(1442), 300–319 (1966) Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 295(1442), 300–319 (1966)
21.
go back to reference Farhang, K., Segalman, D.J., Starr, M.J.: Approximate constitutive relation for lap joints using a tribo-mechanical approach. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA (2007). ASME Farhang, K., Segalman, D.J., Starr, M.J.: Approximate constitutive relation for lap joints using a tribo-mechanical approach. In: Proceedings of the ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Las Vegas, Nevada, USA (2007). ASME
22.
go back to reference Jones, R.E.: A Greenwood–Williamson model of small-scale friction. J. Appl. Mech. 74(1), 31–40 (2007)MATH Jones, R.E.: A Greenwood–Williamson model of small-scale friction. J. Appl. Mech. 74(1), 31–40 (2007)MATH
23.
go back to reference Argatov, I.I., Butcher, E.A.: On the Iwan models for lap-type bolted joints. Int. J. Non-Linear Mech. 46(2), 347–356 (2011) Argatov, I.I., Butcher, E.A.: On the Iwan models for lap-type bolted joints. Int. J. Non-Linear Mech. 46(2), 347–356 (2011)
24.
go back to reference Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110(1), 57–63 (1988) Chang, W.R., Etsion, I., Bogy, D.B.: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110(1), 57–63 (1988)
25.
go back to reference Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. 126(1), 34–40 (2004) Kogut, L., Etsion, I.: A static friction model for elastic-plastic contacting rough surfaces. J. Tribol. 126(1), 34–40 (2004)
26.
go back to reference Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for fretting behavior of nominally flat rough surfaces. Int. J. Solids Struct. 48(10), 1436–1450 (2011)MATH Eriten, M., Polycarpou, A.A., Bergman, L.A.: Physics-based modeling for fretting behavior of nominally flat rough surfaces. Int. J. Solids Struct. 48(10), 1436–1450 (2011)MATH
27.
go back to reference Ödfalk, M., Vingsbo, O.: An elastic-plastic model for fretting contact. Wear 157(2), 435–444 (1992) Ödfalk, M., Vingsbo, O.: An elastic-plastic model for fretting contact. Wear 157(2), 435–444 (1992)
28.
go back to reference Fujimoto, T., Kagami, J., Kawaguchi, T., et al.: Micro-displacement characteristics under tangential force. Wear 241(2), 136–142 (2000) Fujimoto, T., Kagami, J., Kawaguchi, T., et al.: Micro-displacement characteristics under tangential force. Wear 241(2), 136–142 (2000)
29.
go back to reference Wang, D., Xu, C., Wan, Q.: Modeling tangential contact of rough surfaces with elastic- and plastic-deformed asperities. J. Tribol. 139(5), 051401 (2017) Wang, D., Xu, C., Wan, Q.: Modeling tangential contact of rough surfaces with elastic- and plastic-deformed asperities. J. Tribol. 139(5), 051401 (2017)
30.
go back to reference Zhang, X., Vu-Quoc, L.: An accurate elasto-plastic frictional tangential force-displacement model for granular-flow simulations: displacement-driven formulation. J. Comput. Phys. 225(1), 730–752 (2007)MATH Zhang, X., Vu-Quoc, L.: An accurate elasto-plastic frictional tangential force-displacement model for granular-flow simulations: displacement-driven formulation. J. Comput. Phys. 225(1), 730–752 (2007)MATH
31.
go back to reference Vu-Quoc, L., Lesburg, L., Zhang, X.: An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196(1), 298–326 (2004)MATH Vu-Quoc, L., Lesburg, L., Zhang, X.: An accurate tangential force-displacement model for granular-flow simulations: contacting spheres with plastic deformation, force-driven formulation. J. Comput. Phys. 196(1), 298–326 (2004)MATH
32.
go back to reference Brake, M.R.W.: A reduced Iwan model that includes pinning for bolted joint mechanics. Nonlinear Dyn. 87(2), 1335–1349 (2017) Brake, M.R.W.: A reduced Iwan model that includes pinning for bolted joint mechanics. Nonlinear Dyn. 87(2), 1335–1349 (2017)
33.
go back to reference Chen, W., Deng, X.: Structural damping caused by micro-slip along frictional interfaces. Int. J. Mech. Sci. 47(8), 1191–1211 (2005)MATH Chen, W., Deng, X.: Structural damping caused by micro-slip along frictional interfaces. Int. J. Mech. Sci. 47(8), 1191–1211 (2005)MATH
34.
go back to reference Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84(1), 25–33 (2005) Oldfield, M., Ouyang, H., Mottershead, J.E.: Simplified models of bolted joints under harmonic loading. Comput. Struct. 84(1), 25–33 (2005)
35.
go back to reference Li, Y., Hao, Z.: A six-parameter Iwan model and its application. Mech. Syst. Signal Process. 68–69, 354–365 (2016) Li, Y., Hao, Z.: A six-parameter Iwan model and its application. Mech. Syst. Signal Process. 68–69, 354–365 (2016)
36.
go back to reference Segalman, D.J.: A four-parameter Iwan model for lap-type joints. J. Appl. Mech. 72(5), 752–760 (2005)MATH Segalman, D.J.: A four-parameter Iwan model for lap-type joints. J. Appl. Mech. 72(5), 752–760 (2005)MATH
37.
go back to reference Abad, J., Medel, F.J., Franco, J.M.: Determination of Valanis model parameters in a bolted lap joint: experimental and numerical analyses of frictional dissipation. Int. J. Mech. Sci. 89(14), 289–298 (2014) Abad, J., Medel, F.J., Franco, J.M.: Determination of Valanis model parameters in a bolted lap joint: experimental and numerical analyses of frictional dissipation. Int. J. Mech. Sci. 89(14), 289–298 (2014)
38.
go back to reference Rajaei, M., Ahmadian, H.: Development of generalized Iwan model to simulate frictional contacts with variable normal loads. Appl. Math. Model. 38(15–16), 4006–4018 (2014)MathSciNetMATH Rajaei, M., Ahmadian, H.: Development of generalized Iwan model to simulate frictional contacts with variable normal loads. Appl. Math. Model. 38(15–16), 4006–4018 (2014)MathSciNetMATH
39.
go back to reference Bograd, S., Reuss, P., Schmidt, A., et al.: Modeling the dynamics of mechanical joints. Mech. Syst. Signal Process. 25(8), 2801–2826 (2011) Bograd, S., Reuss, P., Schmidt, A., et al.: Modeling the dynamics of mechanical joints. Mech. Syst. Signal Process. 25(8), 2801–2826 (2011)
40.
go back to reference Gaul, L., Nitsche, R.: The role of friction in mechanical joints. Appl. Mech. Rev. 54(2), 93–106 (2001) Gaul, L., Nitsche, R.: The role of friction in mechanical joints. Appl. Mech. Rev. 54(2), 93–106 (2001)
41.
go back to reference Quinn, D.D., Segalman, D.J.: Using series-series Iwan-type models for understanding joint dynamics. J. Appl. Mech. 72(5), 666–673 (2005)MATH Quinn, D.D., Segalman, D.J.: Using series-series Iwan-type models for understanding joint dynamics. J. Appl. Mech. 72(5), 666–673 (2005)MATH
42.
go back to reference Deshmukh, D.V., Berger, E.J., Begley, M.R., et al.: Correlation of a discrete friction (Iwan) element and continuum approaches to predict interface sliding behavior. Eur. J. Mech. A:Solids 26(2), 212–224 (2007)MATH Deshmukh, D.V., Berger, E.J., Begley, M.R., et al.: Correlation of a discrete friction (Iwan) element and continuum approaches to predict interface sliding behavior. Eur. J. Mech. A:Solids 26(2), 212–224 (2007)MATH
43.
go back to reference Miller, J.D., Dane Quinn, D.: A two-sided interface model for dissipation in structural systems with frictional joints. J. Sound Vib. 321(1–2), 201–219 (2009) Miller, J.D., Dane Quinn, D.: A two-sided interface model for dissipation in structural systems with frictional joints. J. Sound Vib. 321(1–2), 201–219 (2009)
44.
go back to reference Song, Y., Hartwigsen, C.J., Bergman, L.A., et al.: A three-dimensional nonlinear reduced-order predictive joint model. Earthq. Eng. Eng. Vib. 2(1), 59–73 (2003) Song, Y., Hartwigsen, C.J., Bergman, L.A., et al.: A three-dimensional nonlinear reduced-order predictive joint model. Earthq. Eng. Eng. Vib. 2(1), 59–73 (2003)
45.
go back to reference Song, Y., Hartwigsen, C.J., McFarland, D.M., et al.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273(1), 249–276 (2004) Song, Y., Hartwigsen, C.J., McFarland, D.M., et al.: Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements. J. Sound Vib. 273(1), 249–276 (2004)
46.
go back to reference Yang, X., Nassar, S.A., Wu, Z.: Criterion for preventing self-loosening of preloaded cap screws under transverse cyclic excitation. J. Vib. Acoust. 133(4), 041013 (2011) Yang, X., Nassar, S.A., Wu, Z.: Criterion for preventing self-loosening of preloaded cap screws under transverse cyclic excitation. J. Vib. Acoust. 133(4), 041013 (2011)
47.
go back to reference Nassar, S.A., Yang, X.: A mathematical model for vibration-induced loosening of preloaded threaded fasteners. J. Vib. Acoust. 131(2), 021009 (2009) Nassar, S.A., Yang, X.: A mathematical model for vibration-induced loosening of preloaded threaded fasteners. J. Vib. Acoust. 131(2), 021009 (2009)
48.
go back to reference Segalman, D.J., Starr, M.J.: Relationships Among Certain Joint Constitutive Models. Sandia National Laboratories, Albuquerque, NM (2004) Segalman, D.J., Starr, M.J.: Relationships Among Certain Joint Constitutive Models. Sandia National Laboratories, Albuquerque, NM (2004)
49.
go back to reference Segalman, D.J., Starr, M.J.: Inversion of Masing models via continuous Iwan systems. Int. J. Non-Linear Mech. 43(1), 74–80 (2008) Segalman, D.J., Starr, M.J.: Inversion of Masing models via continuous Iwan systems. Int. J. Non-Linear Mech. 43(1), 74–80 (2008)
50.
go back to reference Eriten, M., Polycarpou, A.A., Bergman, L.A.: Effects of surface roughness and lubrication on the early stages of fretting of mechanical lap joints. Wear 271(11–12), 2928–2939 (2011) Eriten, M., Polycarpou, A.A., Bergman, L.A.: Effects of surface roughness and lubrication on the early stages of fretting of mechanical lap joints. Wear 271(11–12), 2928–2939 (2011)
Metadata
Title
A four-parameter model for nonlinear stiffness of a bolted joint with non-Gaussian surfaces
Authors
Dong Wang
Zhousuo Zhang
Publication date
20-02-2020
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 5/2020
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02635-5

Other articles of this Issue 5/2020

Acta Mechanica 5/2020 Go to the issue

Premium Partners