Skip to main content
Top
Published in: Multimedia Systems 4/2023

28-05-2023 | Regular Paper

An automatic cascaded approach for pancreas segmentation via an unsupervised localization using 3D CT volumes

Authors: Suchi Jain, Geeta Sikka, Renu Dhir

Published in: Multimedia Systems | Issue 4/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Automatic organ segmentation using computed tomography (CT) images can support radiologists while carrying out quantitative and qualitative analyses of various types of cancer in their early stages. This work is aimed at automating the segmentation of the pancreas using CT images, which would ultimately aid in the early detection of pancreatic cancer. The pancreas is a small and challenging organ for automatic segmentation due to its variability in shape, size, and position. The state-of-the-art convolution neural networks (CNNs) based approaches have reported acceptable outcomes for stable large organs, but limited results for small organs like the pancreas. Although CNNs based results are promising, they utilized the supervised approach for localization, which required annotations. Hence, to avoid the need for annotations during localization, a novel unsupervised localization approach is proposed. The proposed approach localizes the pancreas from 3D CT volume using the spatial locations of stable large organs such as the liver and spleen. However, their spatial locations are detected in an unsupervised way. Furthermore, a 2D multi-view fusion deep learning model is used to extract the boundaries of the pancreas using the small bounding box around the pancreas region. The segmentation results are very encouraging and motivating to use an unsupervised localization approach instead of a supervised approach. A large number of experiments are performed using the NIH-82 CT dataset, which reveals that the proposed localization approach can achieve good segmentation results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
3.
go back to reference Prevedello, L.M., et al.: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiol Artif Intell 1(1), e180031 (2019)CrossRef Prevedello, L.M., et al.: Challenges related to artificial intelligence research in medical imaging and the importance of image analysis competitions. Radiol Artif Intell 1(1), e180031 (2019)CrossRef
6.
go back to reference Farag, A., et al.: A bottom–up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans Image Process 26(1), 386–399 (2016)MathSciNetCrossRefMATH Farag, A., et al.: A bottom–up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling. IEEE Trans Image Process 26(1), 386–399 (2016)MathSciNetCrossRefMATH
7.
go back to reference Erdt, M, et al.: Automatic pancreas segmentation in contrast enhanced CT data using learned spatial anatomy and texture descriptors. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, (2011) Erdt, M, et al.: Automatic pancreas segmentation in contrast enhanced CT data using learned spatial anatomy and texture descriptors. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE, (2011)
8.
go back to reference Shimizu, A.: Pancreas segmentation in three-phase abdominal CT volume data. Int J Comput Assist Rad Surg 3, s393–s394 (2008) Shimizu, A.: Pancreas segmentation in three-phase abdominal CT volume data. Int J Comput Assist Rad Surg 3, s393–s394 (2008)
9.
go back to reference Shimizu, A., et al.: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5(1), 85–98 (2010)CrossRef Shimizu, A., et al.: Automated pancreas segmentation from three-dimensional contrast-enhanced computed tomography. Int J Comput Assist Radiol Surg 5(1), 85–98 (2010)CrossRef
10.
go back to reference Krizhevsky, Alex, Sutskever, Ilya, Hinton, Geoffrey E.: Imagenet classification with deep convolutional neural networks. Commun ACM 60(6), 84–90 (2017)CrossRef Krizhevsky, Alex, Sutskever, Ilya, Hinton, Geoffrey E.: Imagenet classification with deep convolutional neural networks. Commun ACM 60(6), 84–90 (2017)CrossRef
11.
go back to reference He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2016) He, K., et al.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2016)
12.
go back to reference Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2015) Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2015)
13.
go back to reference Chen, L.-C., et al.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)CrossRef Chen, L.-C., et al.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFS. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)CrossRef
14.
go back to reference Fang, Y., et al.: 3d deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015) Fang, Y., et al.: 3d deep shape descriptor. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015)
15.
go back to reference Li, Xiaomeng, et al.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE transactions on medical imaging 37(12), 2663–2674 (2018)CrossRef Li, Xiaomeng, et al.: H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE transactions on medical imaging 37(12), 2663–2674 (2018)CrossRef
16.
go back to reference Wenjian, Q., et al.: Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Phys. Med. Biol. 63(9), 095017 (2018)CrossRef Wenjian, Q., et al.: Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation. Phys. Med. Biol. 63(9), 095017 (2018)CrossRef
17.
go back to reference Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2017)CrossRef Ngo, T.A., Lu, Z., Carneiro, G.: Combining deep learning and level set for the automated segmentation of the left ventricle of the heart from cardiac cine magnetic resonance. Med. Image Anal. 35, 159–171 (2017)CrossRef
18.
go back to reference Park, J., et al.: Fully automated lung lobe segmentation in volumetric chest CT with 3D U-Net: validation with intra-and extra-datasets. J. Dig. imaging 33(1), 221–230 (2020)CrossRef Park, J., et al.: Fully automated lung lobe segmentation in volumetric chest CT with 3D U-Net: validation with intra-and extra-datasets. J. Dig. imaging 33(1), 221–230 (2020)CrossRef
19.
go back to reference Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2014) Girshick, R., et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (2014)
20.
go back to reference Heinrich, M.P., Oktay, O.: BRIEFnet: deep pancreas segmentation using binary sparse convolutions. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham (2017) Heinrich, M.P., Oktay, O.: BRIEFnet: deep pancreas segmentation using binary sparse convolutions. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham (2017)
21.
go back to reference Roth, H. R., et al.: Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)CrossRef Roth, H. R., et al.: Spatial aggregation of holistically-nested convolutional neural networks for automated pancreas localization and segmentation. Med. Image Anal. 45, 94–107 (2018)CrossRef
22.
go back to reference Jain, S., Gupta, S., Gulati, A.: An adaptive hybrid technique for pancreas segmentation using CT image sequences. In: 2015 International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, (2015) Jain, S., Gupta, S., Gulati, A.: An adaptive hybrid technique for pancreas segmentation using CT image sequences. In: 2015 International Conference on Signal Processing, Computing and Control (ISPCC). IEEE, (2015)
23.
go back to reference Liu, X., et al.: Organ pose distribution model and an MAP framework for automated abdominal multi-organ localization. In: International Workshop on Medical Imaging and Virtual Reality. Springer, Berlin, Heidelberg (2010) Liu, X., et al.: Organ pose distribution model and an MAP framework for automated abdominal multi-organ localization. In: International Workshop on Medical Imaging and Virtual Reality. Springer, Berlin, Heidelberg (2010)
24.
go back to reference Huang, M.-L., Yi-Zhen, W.: Semantic segmentation of pancreatic medical images by using convolutional neural network. Biomed. Signal Process. Control 73, 103458 (2022)CrossRef Huang, M.-L., Yi-Zhen, W.: Semantic segmentation of pancreatic medical images by using convolutional neural network. Biomed. Signal Process. Control 73, 103458 (2022)CrossRef
25.
go back to reference Li, M., Lian, F., Guo, S.: Multi-scale selection and multi-channel fusion model for pancreas segmentation using adversarial deep convolutional nets. J. Dig. Imaging 35(1), 47–55 (2022)CrossRef Li, M., Lian, F., Guo, S.: Multi-scale selection and multi-channel fusion model for pancreas segmentation using adversarial deep convolutional nets. J. Dig. Imaging 35(1), 47–55 (2022)CrossRef
26.
go back to reference Li, J., et al.: Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet. Phys. Med. Biol. 66(11), 115010 (2021)CrossRef Li, J., et al.: Pancreas segmentation with probabilistic map guided bi-directional recurrent UNet. Phys. Med. Biol. 66(11), 115010 (2021)CrossRef
27.
go back to reference Oda, Masahiro., et al.: “Regression forest-based atlas localization and direction specific atlas generation for pancreas segmentation.” International conference on medical image computing and computer-assisted intervention. Springer, Cham, (2016) Oda, Masahiro., et al.: “Regression forest-based atlas localization and direction specific atlas generation for pancreas segmentation.” International conference on medical image computing and computer-assisted intervention. Springer, Cham, (2016)
28.
29.
go back to reference Roth, H. R., et al.: An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput. Med. Imaging Graph. 66, 90–99 (2018)CrossRef Roth, H. R., et al.: An application of cascaded 3D fully convolutional networks for medical image segmentation. Comput. Med. Imaging Graph. 66, 90–99 (2018)CrossRef
30.
go back to reference Zhao, N., et al.: Fully automated pancreas segmentation with two-stage 3D convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, (2019) Zhao, N., et al.: Fully automated pancreas segmentation with two-stage 3D convolutional neural networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Cham, (2019)
31.
go back to reference Xue, J., et al.: Cascaded multitask 3-D fully convolutional networks for pancreas segmentation. IEEE Trans. Cybern. 51(4), 2153–2165 (2019)CrossRef Xue, J., et al.: Cascaded multitask 3-D fully convolutional networks for pancreas segmentation. IEEE Trans. Cybern. 51(4), 2153–2165 (2019)CrossRef
32.
go back to reference Tian, M., et al.: MCMC guided CNN training and segmentation for pancreas extraction. IEEE Access 9, 90539–90554 (2021)CrossRef Tian, M., et al.: MCMC guided CNN training and segmentation for pancreas extraction. IEEE Access 9, 90539–90554 (2021)CrossRef
33.
go back to reference Zheng, H., et al.: Improving the slice interaction of 2.5 D CNN for automatic pancreas segmentation. Med. Phys. 47(11), 5543–5554 (2020)CrossRef Zheng, H., et al.: Improving the slice interaction of 2.5 D CNN for automatic pancreas segmentation. Med. Phys. 47(11), 5543–5554 (2020)CrossRef
34.
go back to reference Karasawa, K., et al.: Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases. In: Medical Imaging 2015: Image Processing. Vol. 9413. SPIE (2015) Karasawa, K., et al.: Pancreas segmentation from 3D abdominal CT images using patient-specific weighted subspatial probabilistic atlases. In: Medical Imaging 2015: Image Processing. Vol. 9413. SPIE (2015)
35.
go back to reference Karasawa, K., et al.: Multi-atlas pancreas segmentation: atlas selection based on vessel structure. Med Image Anal 39, 18–28 (2017)CrossRef Karasawa, K., et al.: Multi-atlas pancreas segmentation: atlas selection based on vessel structure. Med Image Anal 39, 18–28 (2017)CrossRef
36.
go back to reference Zhang, L., et al.: An improved method for pancreas segmentation using SLIC and interactive region merging. In: Medical Imaging 2017: Computer-Aided Diagnosis. Vol. 10134. SPIE (2017) Zhang, L., et al.: An improved method for pancreas segmentation using SLIC and interactive region merging. In: Medical Imaging 2017: Computer-Aided Diagnosis. Vol. 10134. SPIE (2017)
37.
go back to reference Zhang, Y., et al.: A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med. Image Anal. 68, 101884 (2021)CrossRef Zhang, Y., et al.: A deep learning framework for pancreas segmentation with multi-atlas registration and 3D level-set. Med. Image Anal. 68, 101884 (2021)CrossRef
38.
go back to reference Qiu, C., et al.: Pancreas segmentation based on an optimized coarse-to-fine method. In: 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). IEEE (2020) Qiu, C., et al.: Pancreas segmentation based on an optimized coarse-to-fine method. In: 2020 International Conference on Internet of Things and Intelligent Applications (ITIA). IEEE (2020)
39.
go back to reference Hu, P., et al.: Automatic pancreas segmentation in CT images with distance-based saliency-aware DenseASPP network. IEEE J. Biomed. Health Inform. 25(5), 1601–1611 (2020)CrossRef Hu, P., et al.: Automatic pancreas segmentation in CT images with distance-based saliency-aware DenseASPP network. IEEE J. Biomed. Health Inform. 25(5), 1601–1611 (2020)CrossRef
40.
go back to reference Dogan, R. O., et al.: A two-phase approach using mask R-CNN and 3D U-Net for high-accuracy automatic segmentation of pancreas in CT imaging. Comput. Methods Prog. Biomed. 207, 106141 (2021)CrossRef Dogan, R. O., et al.: A two-phase approach using mask R-CNN and 3D U-Net for high-accuracy automatic segmentation of pancreas in CT imaging. Comput. Methods Prog. Biomed. 207, 106141 (2021)CrossRef
41.
go back to reference Chen, H., Liu, Y., Shi, Z.: FPF-Net: feature propagation and fusion based on attention mechanism for pancreas segmentation. In: Multimedia systems, pp 1–14 (2022) Chen, H., Liu, Y., Shi, Z.: FPF-Net: feature propagation and fusion based on attention mechanism for pancreas segmentation. In: Multimedia systems, pp 1–14 (2022)
42.
go back to reference Liu, Z., et al.: Pancreas co-segmentation based on dynamic ROI extraction and VGGU-Net. Expert Syst. Appl. 192, 116444 (2022)CrossRef Liu, Z., et al.: Pancreas co-segmentation based on dynamic ROI extraction and VGGU-Net. Expert Syst. Appl. 192, 116444 (2022)CrossRef
43.
go back to reference Chen, H., et al.: Pancreas segmentation by two-view feature learning and multi-scale supervision. Biomed. Signal Process. Control 74, 103519 (2022)CrossRef Chen, H., et al.: Pancreas segmentation by two-view feature learning and multi-scale supervision. Biomed. Signal Process. Control 74, 103519 (2022)CrossRef
44.
go back to reference Zhang, Dingwen, et al.: Automatic pancreas segmentation based on lightweight DCNN modules and spatial prior propagation. Pattern Recogn. 114, 107762 (2021)CrossRef Zhang, Dingwen, et al.: Automatic pancreas segmentation based on lightweight DCNN modules and spatial prior propagation. Pattern Recogn. 114, 107762 (2021)CrossRef
45.
go back to reference Huang, Q., et al.: Fully automatic liver segmentation in CT images using modified graph cuts and feature detection. Comput. Biol. med. 95, 198–208 (2018)CrossRef Huang, Q., et al.: Fully automatic liver segmentation in CT images using modified graph cuts and feature detection. Comput. Biol. med. 95, 198–208 (2018)CrossRef
46.
go back to reference Roth, H. R., et al.: Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham (2015) Roth, H. R., et al.: Deeporgan: Multi-level deep convolutional networks for automated pancreas segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Cham (2015)
47.
go back to reference Roth, H., et al.: Data from pancreas-CT. The cancer imaging archive (2016)’ Roth, H., et al.: Data from pancreas-CT. The cancer imaging archive (2016)’
48.
go back to reference Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Dig. imaging 26(6), 1045–1057 (2013)CrossRef Clark, K., et al.: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Dig. imaging 26(6), 1045–1057 (2013)CrossRef
49.
go back to reference Landman, B., et al.: Miccai multi-atlas labeling beyond the cranial vault” workshop and challenge. In: Proc. MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge. Vol 5 (2015) Landman, B., et al.: Miccai multi-atlas labeling beyond the cranial vault” workshop and challenge. In: Proc. MICCAI Multi-Atlas Labeling Beyond Cranial Vault-Workshop Challenge. Vol 5 (2015)
50.
go back to reference Nakaguchi, T., et al.: Pancreas extraction using a deformable model on abdominal CT image. In: International workshop on nonlinear circuits and signal processing (2004) Nakaguchi, T., et al.: Pancreas extraction using a deformable model on abdominal CT image. In: International workshop on nonlinear circuits and signal processing (2004)
51.
go back to reference Okada, T., et al. : Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg (2013) Okada, T., et al. : Abdominal multi-organ CT segmentation using organ correlation graph and prediction-based shape and location priors. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg (2013)
52.
go back to reference Ronneberger, O., Fischer, P., Brox, T: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, (2015) Ronneberger, O., Fischer, P., Brox, T: U-net: convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham, (2015)
53.
go back to reference Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision (2015) Xie, S., Tu, Z.: Holistically-nested edge detection. In: Proceedings of the IEEE international conference on computer vision (2015)
54.
go back to reference Chen, L., et al.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018)CrossRef Chen, L., et al.: DRINet for medical image segmentation. IEEE Trans. Med. Imaging 37(11), 2453–2462 (2018)CrossRef
55.
go back to reference Dice, Lee R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRef Dice, Lee R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)CrossRef
57.
go back to reference Man, Y., et al.: Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Trans. Med. Imaging 38(8), 1971–1980 (2019)CrossRef Man, Y., et al.: Deep Q learning driven CT pancreas segmentation with geometry-aware U-Net. IEEE Trans. Med. Imaging 38(8), 1971–1980 (2019)CrossRef
59.
go back to reference Khosravan, N., et al.: Pan: projective adversarial network for medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part VI 22. Springer International Publishing (2019) Khosravan, N., et al.: Pan: projective adversarial network for medical image segmentation. In: Medical Image Computing and Computer Assisted Intervention-MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13-17, 2019, Proceedings, Part VI 22. Springer International Publishing (2019)
60.
go back to reference Li, J., et al.: A 2.5 D semantic segmentation of the pancreas using attention guided dual context embedded U-Net. Neurocomputing 480, 14–26 (2022)CrossRef Li, J., et al.: A 2.5 D semantic segmentation of the pancreas using attention guided dual context embedded U-Net. Neurocomputing 480, 14–26 (2022)CrossRef
Metadata
Title
An automatic cascaded approach for pancreas segmentation via an unsupervised localization using 3D CT volumes
Authors
Suchi Jain
Geeta Sikka
Renu Dhir
Publication date
28-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 4/2023
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-023-01115-9

Other articles of this Issue 4/2023

Multimedia Systems 4/2023 Go to the issue