Skip to main content
Top
Published in: Journal of Materials Science 12/2017

06-03-2017 | Original Paper

An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets

Authors: Ravindra Jha, Prasanta Kumar Guha

Published in: Journal of Materials Science | Issue 12/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Tungsten sulfide is a promising, though less explored layered transition metal dichalcogenides material which can be exfoliated into mono and fewlayers with enhanced electronic, optoelectronics, sensing and catalytic properties. Liquid-phase exfoliation in high-boiling-point solvents (i.e., N-methyl-2-pyrrolidone), surfactant-assisted exfoliation and polymer-associated exfoliation are some of the widely used techniques for mass exfoliation of layered materials. Due to the high boiling point of these well-established solvents, surfactants and co-solvents, it is difficult to get pristine nanosheets, which are of highest importance in applications like gas sensing. The common solvents like acetone and water have been employed in this work along with low power ultrasonication waves to exfoliate bulk WS2 which makes this process low cost and convenient. The effect of freezing on exfoliation has been effectively utilized to tailor Hansen solubility parameters of solvents. Monolayers and few layers with lateral dimension of few hundred nanometers have been synthesized with yield of 2.7% and characterized extensively using electron microscopy, atomic force microscopy and optical spectroscopies. The nanosheets have been found to be stable with no precipitation formation for months. This method uses low-boiling-point solvents, hence guaranties the pristine two-dimensional surfaces.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS 2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805CrossRef Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS 2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805CrossRef
2.
go back to reference Xiao D, Liu G-B, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Phys Rev Lett 108(19):196802CrossRef Xiao D, Liu G-B, Feng W, Xu X, Yao W (2012) Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Phys Rev Lett 108(19):196802CrossRef
3.
go back to reference He K, Kumar N, Zhao L, Wang Z, Mak KF, Zhao H, Shan J (2014) Tightly bound excitons in monolayer WSe 2. Phys Rev Lett 113(2):026803CrossRef He K, Kumar N, Zhao L, Wang Z, Mak KF, Zhao H, Shan J (2014) Tightly bound excitons in monolayer WSe 2. Phys Rev Lett 113(2):026803CrossRef
4.
go back to reference Gandi AN, Schwingenschlögl U (2014) WS2 as an excellent high-temperature thermoelectric material. Chem Mater 26(22):6628–6637CrossRef Gandi AN, Schwingenschlögl U (2014) WS2 as an excellent high-temperature thermoelectric material. Chem Mater 26(22):6628–6637CrossRef
5.
go back to reference Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2006) On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc Natl Acad Sci USA 103(3):523–528CrossRef Kaplan-Ashiri I, Cohen SR, Gartsman K, Ivanovskaya V, Heine T, Seifert G, Wiesel I, Wagner HD, Tenne R (2006) On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc Natl Acad Sci USA 103(3):523–528CrossRef
6.
go back to reference Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5(12):9703–9709CrossRef Bertolazzi S, Brivio J, Kis A (2011) Stretching and breaking of ultrathin MoS2. ACS Nano 5(12):9703–9709CrossRef
7.
go back to reference Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425CrossRef Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425CrossRef
8.
go back to reference Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A (2014) Electrical transport properties of single-layer WS2. ACS Nano 8(8):8174–8181CrossRef Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A (2014) Electrical transport properties of single-layer WS2. ACS Nano 8(8):8174–8181CrossRef
9.
go back to reference Lezama IG, Ubaldini A, Longobardi M, Giannini E, Renner C, Kuzmenko AB, Morpurgo AF (2014) Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater 1(2):021002CrossRef Lezama IG, Ubaldini A, Longobardi M, Giannini E, Renner C, Kuzmenko AB, Morpurgo AF (2014) Surface transport and band gap structure of exfoliated 2H-MoTe2 crystals. 2D Mater 1(2):021002CrossRef
10.
go back to reference Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277CrossRef Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S (2013) Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc 135(28):10274–10277CrossRef
11.
go back to reference Lee HS, Min S-W, Chang Y-G, Park MK, Nam T, Kim H, Kim JH, Ryu S, Im S (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12(7):3695–3700CrossRef Lee HS, Min S-W, Chang Y-G, Park MK, Nam T, Kim H, Kim JH, Ryu S, Im S (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12(7):3695–3700CrossRef
12.
go back to reference Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4):3246–3252CrossRef Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7(4):3246–3252CrossRef
13.
go back to reference Buscema M, Barkelid M, Zwiller V, van der Zant HS, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13(2):358–363CrossRef Buscema M, Barkelid M, Zwiller V, van der Zant HS, Steele GA, Castellanos-Gomez A (2013) Large and tunable photothermoelectric effect in single-layer MoS2. Nano Lett 13(2):358–363CrossRef
14.
go back to reference Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8(14):2264–2270CrossRef Wu S, Zeng Z, He Q, Wang Z, Wang SJ, Du Y, Yin Z, Sun X, Chen W, Zhang H (2012) Electrochemically reduced single-layer MoS2 nanosheets: characterization, properties, and sensing applications. Small 8(14):2264–2270CrossRef
15.
go back to reference Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712CrossRef Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712CrossRef
16.
go back to reference Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRef Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S, Geim A (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRef
17.
go back to reference Gong Y, Lin Z, Ye G, Shi G, Feng S, Lei Y, Elías AL, Perea-Lopez N, Vajtai R, Terrones H, Liu Z, Terrones M, Ajayan PM (2015) Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 9(12):11658–11666. doi:10.1021/acsnano.5b05594 CrossRef Gong Y, Lin Z, Ye G, Shi G, Feng S, Lei Y, Elías AL, Perea-Lopez N, Vajtai R, Terrones H, Liu Z, Terrones M, Ajayan PM (2015) Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 9(12):11658–11666. doi:10.​1021/​acsnano.​5b05594 CrossRef
18.
go back to reference Fu Q, Wang W, Yang L, Huang J, Zhang J, Xiang B (2015) Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv 5(21):15795–15799. doi:10.1039/C5RA00210A CrossRef Fu Q, Wang W, Yang L, Huang J, Zhang J, Xiang B (2015) Controllable synthesis of high quality monolayer WS2 on a SiO2/Si substrate by chemical vapor deposition. RSC Adv 5(21):15795–15799. doi:10.​1039/​C5RA00210A CrossRef
19.
go back to reference Ma L (2014) Synthesis and characterization of large area few-layer MoS2 and WS2 films. The Ohio State University, Columbus Ma L (2014) Synthesis and characterization of large area few-layer MoS2 and WS2 films. The Ohio State University, Columbus
20.
go back to reference Shen J, He Y, Wu J, Gao C, Keyshar K, Zhang X, Yang Y, Ye M, Vajtai R, Lou J (2015) Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett 15(8):5449–5454CrossRef Shen J, He Y, Wu J, Gao C, Keyshar K, Zhang X, Yang Y, Ye M, Vajtai R, Lou J (2015) Liquid phase exfoliation of two-dimensional materials by directly probing and matching surface tension components. Nano Lett 15(8):5449–5454CrossRef
21.
go back to reference Nguyen EP, Daeneke T, Zhuiykov S, Kalantar-zadeh K (2009) Liquid exfoliation of layered transition metal dichalcogenides for biological applications. In: Current protocols in chemical biology. Wiley. doi:10.1002/cpch.3 Nguyen EP, Daeneke T, Zhuiykov S, Kalantar-zadeh K (2009) Liquid exfoliation of layered transition metal dichalcogenides for biological applications. In: Current protocols in chemical biology. Wiley. doi:10.​1002/​cpch.​3
22.
go back to reference Bissessur R, Heising J, Hirpo W, Kanatzidis M (1996) Toward pillared layered metal sulfides. Intercalation of the chalcogenide clusters Co6Q8 (PR3) 6 (Q=S, Se, and Te and R=Alkyl) into MoS2. Chem Mater 8(2):318–320CrossRef Bissessur R, Heising J, Hirpo W, Kanatzidis M (1996) Toward pillared layered metal sulfides. Intercalation of the chalcogenide clusters Co6Q8 (PR3) 6 (Q=S, Se, and Te and R=Alkyl) into MoS2. Chem Mater 8(2):318–320CrossRef
23.
go back to reference Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325CrossRef Lee YH, Zhang XQ, Zhang W, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24(17):2320–2325CrossRef
24.
go back to reference Kranthi Kumar V, Dhar S, Choudhury TH, Shivashankar SA, Raghavan S (2015) A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. Nanoscale 7(17):7802–7810. doi:10.1039/C4NR07080A CrossRef Kranthi Kumar V, Dhar S, Choudhury TH, Shivashankar SA, Raghavan S (2015) A predictive approach to CVD of crystalline layers of TMDs: the case of MoS2. Nanoscale 7(17):7802–7810. doi:10.​1039/​C4NR07080A CrossRef
25.
go back to reference Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571CrossRef Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017):568–571CrossRef
26.
go back to reference Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg GS, Grunlan JC, Moriarty G (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34):3944–3948CrossRef Smith RJ, King PJ, Lotya M, Wirtz C, Khan U, De S, O’Neill A, Duesberg GS, Grunlan JC, Moriarty G (2011) Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv Mater 23(34):3944–3948CrossRef
27.
go back to reference Zhou K-G, Mao N-N, Wang H-X, Peng Y, Zhang H-L (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50(46):10839–10842. doi:10.1002/anie.201105364 CrossRef Zhou K-G, Mao N-N, Wang H-X, Peng Y, Zhang H-L (2011) A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. Angew Chem Int Ed 50(46):10839–10842. doi:10.​1002/​anie.​201105364 CrossRef
30.
go back to reference Huo C, Yan Z, Song X, Zeng H (2015) 2D materials via liquid exfoliation: a review on fabrication and applications. Sci Bull 60(23):1994–2008CrossRef Huo C, Yan Z, Song X, Zeng H (2015) 2D materials via liquid exfoliation: a review on fabrication and applications. Sci Bull 60(23):1994–2008CrossRef
31.
32.
go back to reference Feng H, Hu Z, Liu X (2015) Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal alloys. Chem Commun 51(54):10961–10964CrossRef Feng H, Hu Z, Liu X (2015) Facile and efficient exfoliation of inorganic layered materials using liquid alkali metal alloys. Chem Commun 51(54):10961–10964CrossRef
33.
go back to reference Chernikov A, van der Zande AM, Hill HM, Rigosi AF, Velauthapillai A, Hone J, Heinz TF (2015) Electrical Tuning of Exciton Binding Energies in Monolayer WS 2. Phys Rev Lett 115(12):126802CrossRef Chernikov A, van der Zande AM, Hill HM, Rigosi AF, Velauthapillai A, Hone J, Heinz TF (2015) Electrical Tuning of Exciton Binding Energies in Monolayer WS 2. Phys Rev Lett 115(12):126802CrossRef
34.
go back to reference Liu H-L, Shen C-C, Su S-H, Hsu C-L, Li M-Y, Li L-J (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105(20):201905CrossRef Liu H-L, Shen C-C, Su S-H, Hsu C-L, Li M-Y, Li L-J (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105(20):201905CrossRef
35.
go back to reference Eda G, Maier SA (2013) Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7(7):5660–5665CrossRef Eda G, Maier SA (2013) Two-dimensional crystals: managing light for optoelectronics. ACS Nano 7(7):5660–5665CrossRef
36.
go back to reference Beal A, Knights J, Liang W (1972) Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J Phys C Solid State Phys 5(24):3540CrossRef Beal A, Knights J, Liang W (1972) Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J Phys C Solid State Phys 5(24):3540CrossRef
37.
go back to reference Bromley R, Murray R, Yoffe A (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C Solid State Phys 5(7):759CrossRef Bromley R, Murray R, Yoffe A (1972) The band structures of some transition metal dichalcogenides. III. Group VIA: trigonal prism materials. J Phys C Solid State Phys 5(7):759CrossRef
38.
go back to reference Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, Wang B, Crespi VH, López-Urías F, Charlier J-C (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep 3:1–8. doi:10.1038/srep01755 CrossRef Berkdemir A, Gutiérrez HR, Botello-Méndez AR, Perea-López N, Elías AL, Chia C-I, Wang B, Crespi VH, López-Urías F, Charlier J-C (2013) Identification of individual and few layers of WS2 using Raman spectroscopy. Sci Rep 3:1–8. doi:10.​1038/​srep01755 CrossRef
39.
go back to reference Carey BJ, Daeneke T, Nguyen EP, Wang Y, Ou JZ, Zhuiykov S, Kalantar-Zadeh K (2015) Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. Chem Commun 51(18):3770–3773CrossRef Carey BJ, Daeneke T, Nguyen EP, Wang Y, Ou JZ, Zhuiykov S, Kalantar-Zadeh K (2015) Two solvent grinding sonication method for the synthesis of two-dimensional tungsten disulphide flakes. Chem Commun 51(18):3770–3773CrossRef
40.
go back to reference Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855CrossRef Voiry D, Yamaguchi H, Li J, Silva R, Alves DC, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G (2013) Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater 12(9):850–855CrossRef
42.
go back to reference Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419CrossRef Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2013) Liquid exfoliation of layered materials. Science 340(6139):1226419CrossRef
43.
go back to reference Lee K, Kim HY, Lotya M, Coleman JN, Kim GT, Duesberg GS (2011) Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv Mater 23(36):4178–4182CrossRef Lee K, Kim HY, Lotya M, Coleman JN, Kim GT, Duesberg GS (2011) Electrical characteristics of molybdenum disulfide flakes produced by liquid exfoliation. Adv Mater 23(36):4178–4182CrossRef
44.
go back to reference Backes C, Smith RJ, McEvoy N, Berner NC, McCloskey D, Nerl HC, O’Neill A, King PJ, Higgins T, Hanlon D (2014) Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat Commun 5:1–10. doi:10.1038/ncomms5576 CrossRef Backes C, Smith RJ, McEvoy N, Berner NC, McCloskey D, Nerl HC, O’Neill A, King PJ, Higgins T, Hanlon D (2014) Edge and confinement effects allow in situ measurement of size and thickness of liquid-exfoliated nanosheets. Nat Commun 5:1–10. doi:10.​1038/​ncomms5576 CrossRef
45.
go back to reference Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca RatonCrossRef Hansen CM (2007) Hansen solubility parameters: a user’s handbook. CRC Press, Boca RatonCrossRef
46.
go back to reference Abbott S, Hansen CM, Yamamoto H, Valpey III (SC Johnson) RS (2008) Hansen solubility parameters in practice–complete with ebook, software, and data, 5th ed. Hansen-Solubility. www.hansen-solubility.com Abbott S, Hansen CM, Yamamoto H, Valpey III (SC Johnson) RS (2008) Hansen solubility parameters in practice–complete with ebook, software, and data, 5th ed. Hansen-Solubility. www.​hansen-solubility.​com
47.
go back to reference Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MS, Coleman JN (2012) Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4):3468–3480CrossRef Cunningham G, Lotya M, Cucinotta CS, Sanvito S, Bergin SD, Menzel R, Shaffer MS, Coleman JN (2012) Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds. ACS Nano 6(4):3468–3480CrossRef
48.
go back to reference Yuan Y, Li R, Liu Z (2014) Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal Chem 86(7):3610–3615CrossRef Yuan Y, Li R, Liu Z (2014) Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal Chem 86(7):3610–3615CrossRef
49.
go back to reference Gao J, Wu S, Rogers M (2012) Harnessing Hansen solubility parameters to predict organogel formation. J Mater Chem 22(25):12651–12658CrossRef Gao J, Wu S, Rogers M (2012) Harnessing Hansen solubility parameters to predict organogel formation. J Mater Chem 22(25):12651–12658CrossRef
50.
go back to reference Zhou M, Zhang Z, Huang K, Shi Z, Xie R, Yang W (2016) Colloidal preparation and electrocatalytic hydrogen production of MoS 2 and WS 2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale 8(33):15262–15272CrossRef Zhou M, Zhang Z, Huang K, Shi Z, Xie R, Yang W (2016) Colloidal preparation and electrocatalytic hydrogen production of MoS 2 and WS 2 nanosheets with controllable lateral sizes and layer numbers. Nanoscale 8(33):15262–15272CrossRef
51.
go back to reference Kim J, Kwon S, Cho D-H, Kang B, Kwon H, Kim Y, Park SO, Jung GY, Shin E, Kim W-G (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:1–9. doi:10.1038/ncomms9294 Kim J, Kwon S, Cho D-H, Kang B, Kwon H, Kim Y, Park SO, Jung GY, Shin E, Kim W-G (2015) Direct exfoliation and dispersion of two-dimensional materials in pure water via temperature control. Nat Commun 6:1–9. doi:10.​1038/​ncomms9294
52.
go back to reference Liu G, Komatsu N (2016) Efficient and scalable production of 2D material dispersions using hexahydroxytriphenylene as a versatile exfoliant and dispersant. ChemPhysChem 17(11):1557–1567. doi:10.1002/cphc.201600187 CrossRef Liu G, Komatsu N (2016) Efficient and scalable production of 2D material dispersions using hexahydroxytriphenylene as a versatile exfoliant and dispersant. ChemPhysChem 17(11):1557–1567. doi:10.​1002/​cphc.​201600187 CrossRef
53.
go back to reference Li C, Wang T, Wu Y, Ma F, Zhao G, Hao X (2014) Fabrication of two-dimensional nanosheets via water freezing expansion exfoliation. Nanotechnology 25(49):495302CrossRef Li C, Wang T, Wu Y, Ma F, Zhao G, Hao X (2014) Fabrication of two-dimensional nanosheets via water freezing expansion exfoliation. Nanotechnology 25(49):495302CrossRef
54.
go back to reference Ohmine I, Saito S (1999) Water dynamics: fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement. Acc Chem Res 32(9):741–749CrossRef Ohmine I, Saito S (1999) Water dynamics: fluctuation, relaxation, and chemical reactions in hydrogen bond network rearrangement. Acc Chem Res 32(9):741–749CrossRef
55.
go back to reference Rao BR (1947) Very high frequency sound velocities in acetone water mixtures. Proc Math Sci 25(2):190–194 Rao BR (1947) Very high frequency sound velocities in acetone water mixtures. Proc Math Sci 25(2):190–194
Metadata
Title
An effective liquid-phase exfoliation approach to fabricate tungsten disulfide into ultrathin two-dimensional semiconducting nanosheets
Authors
Ravindra Jha
Prasanta Kumar Guha
Publication date
06-03-2017
Publisher
Springer US
Published in
Journal of Materials Science / Issue 12/2017
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-0962-4

Other articles of this Issue 12/2017

Journal of Materials Science 12/2017 Go to the issue

Premium Partners