Skip to main content
Top
Published in: Wireless Personal Communications 2/2021

02-03-2021

An Energy Efficient Adaptive Wake-Up Radio MAC (EEAWuR-MAC) Protocol for IoT Wireless Body Area Networks

Authors: Atul Kumar Pandey, Nisha Gupta

Published in: Wireless Personal Communications | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper an improved adaptive energy efficient MAC (EEAWuR-MAC) protocol is proposed to handle emergency data transmission in internet of things wireless body area networks (WBANs) by incorporating the wake-up radio (WuR) mechanism. In WuR based WBANs a body node starts data transmission in an on-demand manner by sending a WuR-message (WuM). The WuR based MAC (WuR-MAC) protocols reduces the latency of data transmission and saves more energy in contrast to duty-cycling MAC protocols. Therefore, the superiority of WuR mechanism over duty-cycling shifts the trend towards WuR-MAC protocols. Furthermore, the investigation of emergency data (ED) handling mechanisms is still required at MAC layer. It is observed that inappropriately configuring the 802.15.4 MAC parameters may lead to performance deterioration in terms of energy efficiency and quality of service (QoS) such as throughput and delay. Therefore, a substantial modification in the existing IEEE 802.15.4 super-frame structure is essentially required for efficiently handling the ED transmission. The proposed protocol employs a modified superframe structure of IEEE 802.15.4 MAC, mainly designed for ultra-low power medical applications under normal and emergency traffic conditions concurrently without any interruption. A systematic analytical framework is developed to derive the mathematical expressions based on M/G/1/2 queuing model to evaluate the performance of proposed protocol in terms of throughput, delay and energy consumption and its validation is carried out using MATLAB simulation.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.CrossRef Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 2347–2376.CrossRef
2.
go back to reference Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.CrossRef Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.CrossRef
3.
go back to reference Khan, R. A., & Pathan, A. S. K. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14(4), 1550147718768994.CrossRef Khan, R. A., & Pathan, A. S. K. (2018). The state-of-the-art wireless body area sensor networks: A survey. International Journal of Distributed Sensor Networks, 14(4), 1550147718768994.CrossRef
4.
go back to reference Yazdi, F. R., Hosseinzadeh, M., & Jabbehdari, S. (2019). A priority-based MAC protocol for energy consumption and delay guaranteed in wireless body area networks. Wireless Personal Communications, 108(3), 1677–1696.CrossRef Yazdi, F. R., Hosseinzadeh, M., & Jabbehdari, S. (2019). A priority-based MAC protocol for energy consumption and delay guaranteed in wireless body area networks. Wireless Personal Communications, 108(3), 1677–1696.CrossRef
5.
go back to reference Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831.CrossRef Ghamari, M., Janko, B., Sherratt, R. S., Harwin, W., Piechockic, R., & Soltanpur, C. (2016). A survey on wireless body area networks for ehealthcare systems in residential environments. Sensors, 16(6), 831.CrossRef
6.
go back to reference Bradai, N., Fourati, L. C., & Kamoun, L. (2014). Investigation and performance analysis of MAC protocols for WBAN networks. Journal of Network and Computer Applications, 46, 362–373.CrossRef Bradai, N., Fourati, L. C., & Kamoun, L. (2014). Investigation and performance analysis of MAC protocols for WBAN networks. Journal of Network and Computer Applications, 46, 362–373.CrossRef
7.
go back to reference Khan, J. Y., Yuce, M. R., Bulger, G., & Harding, B. (2012). Wireless body area network (WBAN) design techniques and performance evaluation. Journal of Medical Systems, 36(3), 1441–1457.CrossRef Khan, J. Y., Yuce, M. R., Bulger, G., & Harding, B. (2012). Wireless body area network (WBAN) design techniques and performance evaluation. Journal of Medical Systems, 36(3), 1441–1457.CrossRef
8.
go back to reference Liu, B., Yan, Z., & Chen, C. W. (2013). MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design. IEEE Wireless Communications, 20(4), 64–72.CrossRef Liu, B., Yan, Z., & Chen, C. W. (2013). MAC protocol in wireless body area networks for E-health: Challenges and a context-aware design. IEEE Wireless Communications, 20(4), 64–72.CrossRef
9.
go back to reference Zhang, M., Ghose, D., & Li, F. Y. (2017). Does wake-up radio always consume lower energy than duty-cycled protocols? In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (pp. 1–5). IEEE. Zhang, M., Ghose, D., & Li, F. Y. (2017). Does wake-up radio always consume lower energy than duty-cycled protocols? In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall) (pp. 1–5). IEEE.
10.
go back to reference Park, P., Di Marco, P., Fischione, C., & Johansson, K. H. (2012). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.CrossRef Park, P., Di Marco, P., Fischione, C., & Johansson, K. H. (2012). Modeling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24(3), 550–564.CrossRef
11.
go back to reference Li, C., Hao, B., Zhang, K., Liu, Y., & Li, J. (2011). A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. Journal of Medical Systems, 35(5), 1265–1275.CrossRef Li, C., Hao, B., Zhang, K., Liu, Y., & Li, J. (2011). A novel medium access control protocol with low delay and traffic adaptivity for wireless body area networks. Journal of Medical Systems, 35(5), 1265–1275.CrossRef
12.
go back to reference Ullah, S., & Kwak, K. S. (2012). An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 36(3), 1021–1030.CrossRef Ullah, S., & Kwak, K. S. (2012). An ultra low-power and traffic-adaptive medium access control protocol for wireless body area network. Journal of Medical Systems, 36(3), 1021–1030.CrossRef
13.
go back to reference Ullah, S. (2013). RFID-enabled MAC protocol for WBAN. In 2013 IEEE international conference on communications (ICC) (pp. 6030–6034). IEEE. Ullah, S. (2013). RFID-enabled MAC protocol for WBAN. In 2013 IEEE international conference on communications (ICC) (pp. 6030–6034). IEEE.
14.
go back to reference Anjum, I., Alam, N., Razzaque, M. A., Mehedi Hassan, M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 9(3), 205192.CrossRef Anjum, I., Alam, N., Razzaque, M. A., Mehedi Hassan, M., & Alamri, A. (2013). Traffic priority and load adaptive MAC protocol for QoS provisioning in body sensor networks. International Journal of Distributed Sensor Networks, 9(3), 205192.CrossRef
15.
go back to reference Ullah, S., Imran, M., & Alnuem, M. (2014). A hybrid and secure priority-guaranteed MAC protocol for wireless body area network. International Journal of Distributed Sensor Networks, 10(2), 481761.CrossRef Ullah, S., Imran, M., & Alnuem, M. (2014). A hybrid and secure priority-guaranteed MAC protocol for wireless body area network. International Journal of Distributed Sensor Networks, 10(2), 481761.CrossRef
16.
go back to reference Hossain, M. U., Kalyan, M., Rana, M. R., & Rahman, M. O. (2014). Multi-dimensional traffic adaptive energy-efficient MAC protocol for wireless body area networks. In 2014 9th international forum on strategic technology (IFOST) (pp. 161–165). IEEE. Hossain, M. U., Kalyan, M., Rana, M. R., & Rahman, M. O. (2014). Multi-dimensional traffic adaptive energy-efficient MAC protocol for wireless body area networks. In 2014 9th international forum on strategic technology (IFOST) (pp. 161–165). IEEE.
17.
go back to reference Xia, F., Wang, L., Zhang, D., He, D., & Kong, X. (2015). An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 58(2), 125–138.CrossRef Xia, F., Wang, L., Zhang, D., He, D., & Kong, X. (2015). An adaptive MAC protocol for real-time and reliable communications in medical cyber-physical systems. Telecommunication Systems, 58(2), 125–138.CrossRef
18.
go back to reference Rasheed, M. B., Javaid, N., Imran, M., Khan, Z. A., Qasim, U., & Vasilakos, A. (2017). Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Networks, 23(4), 1249–1266.CrossRef Rasheed, M. B., Javaid, N., Imran, M., Khan, Z. A., Qasim, U., & Vasilakos, A. (2017). Delay and energy consumption analysis of priority guaranteed MAC protocol for wireless body area networks. Wireless Networks, 23(4), 1249–1266.CrossRef
19.
go back to reference Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16(3), 401.CrossRef Bhandari, S., & Moh, S. (2016). A priority-based adaptive MAC protocol for wireless body area networks. Sensors, 16(3), 401.CrossRef
20.
go back to reference Ullah, F., Abdullah, A. H., Kaiwartya, O., Lloret, J., & Arshad, M. M. (2017). EETP-MAC: Energy efficient traffic prioritization for medium access control in wireless body area networks. Telecommunication Systems, 1–23. Ullah, F., Abdullah, A. H., Kaiwartya, O., Lloret, J., & Arshad, M. M. (2017). EETP-MAC: Energy efficient traffic prioritization for medium access control in wireless body area networks. Telecommunication Systems, 1–23.
21.
go back to reference Ghose, D., Li, F. Y., & Pla, V. (2018). MAC protocols for wake-up radio: Principles, modeling and performance analysis. IEEE Transactions on Industrial Informatics, 14(5), 2294–2306.CrossRef Ghose, D., Li, F. Y., & Pla, V. (2018). MAC protocols for wake-up radio: Principles, modeling and performance analysis. IEEE Transactions on Industrial Informatics, 14(5), 2294–2306.CrossRef
22.
go back to reference Masud, F., Abdullah, A. H., Altameem, A., Abdul-Salaam, G., & Muchtar, F. (2019). Traffic class prioritization-based slotted-CSMA/CA for IEEE 802.15.4 MAC in intra-WBANs. Sensors, 19(3), 466.CrossRef Masud, F., Abdullah, A. H., Altameem, A., Abdul-Salaam, G., & Muchtar, F. (2019). Traffic class prioritization-based slotted-CSMA/CA for IEEE 802.15.4 MAC in intra-WBANs. Sensors, 19(3), 466.CrossRef
23.
go back to reference Pandey, A. K., & Gupta, N. (2020). An energy efficient distributed queuing random access (EE-DQRA) MAC protocol for wireless body sensor networks. Wireless Networks, 1–15. Pandey, A. K., & Gupta, N. (2020). An energy efficient distributed queuing random access (EE-DQRA) MAC protocol for wireless body sensor networks. Wireless Networks, 1–15.
24.
go back to reference Kim, T. O., Park, J. S., Chong, H. J., Kim, K. J., & Choi, B. D. (2008). Performance analysis of IEEE 802.15.4 non-beacon mode with the unslotted CSMA/CA. IEEE Communications Letters, 12(4), 238–240.CrossRef Kim, T. O., Park, J. S., Chong, H. J., Kim, K. J., & Choi, B. D. (2008). Performance analysis of IEEE 802.15.4 non-beacon mode with the unslotted CSMA/CA. IEEE Communications Letters, 12(4), 238–240.CrossRef
25.
go back to reference Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on networking, 15(1), 159–172.CrossRef Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on networking, 15(1), 159–172.CrossRef
26.
go back to reference Pletcher, N., Gambini, S., & Rabaey, J. (2007). A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes. In 2007 IEEE custom integrated circuits conference (pp. 539–542). IEEE. Pletcher, N., Gambini, S., & Rabaey, J. (2007). A 65 μW, 1.9 GHz RF to digital baseband wakeup receiver for wireless sensor nodes. In 2007 IEEE custom integrated circuits conference (pp. 539–542). IEEE.
Metadata
Title
An Energy Efficient Adaptive Wake-Up Radio MAC (EEAWuR-MAC) Protocol for IoT Wireless Body Area Networks
Authors
Atul Kumar Pandey
Nisha Gupta
Publication date
02-03-2021
Publisher
Springer US
Published in
Wireless Personal Communications / Issue 2/2021
Print ISSN: 0929-6212
Electronic ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08262-0

Other articles of this Issue 2/2021

Wireless Personal Communications 2/2021 Go to the issue