Skip to main content
Top

22-04-2024 | Original Article

An experimental investigation on surface quality of 3D metal printed SS316L by direct metal laser sintering technique

Authors: Vemuri Venkata Phani Babu, Veeresh Kumar GB, Praveen Barmavatu

Published in: International Journal on Interactive Design and Manufacturing (IJIDeM)

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The use of additive manufacturing, specifically 3D printing, has significantly altered the manufacturing process for complex geometries composed of various materials. This study investigates the experimental implementation of the Direct Metal Laser Sintering (DMLS) technique for the 3D printing of SS316L. The primary objective of this research is to assess the optimal configuration of operational variables, namely laser power, scan speed, and layer thickness, in order to achieve a desired level of surface roughness. Utilizing laser power levels of 300, 330, and 360 W, scan rates of 800, 900, and 1000 mm/s, and layer thicknesses of 20, 40, and 80 μm, the L27 orthogonal array is utilized to produce SS316L test samples. The evaluation of surface roughness takes into account three primary parameters: Ra, Rz, and Rq. The results of the experiment illustrate the influence of various operational parameters on surface roughness. To determine the significance of individual parameters as well as their interactions, statistical analysis and correlation studies are utilized. As a decision-making instrument, the Analytical Hierarchy Process (AHP) is adapted to determine the optimal combination of operating parameters. In addition, the AHP facilitates the development of a hierarchical framework for evaluating the significance of individual parameters and their respective weights in achieving the most desirable combination. The outcomes demonstrate the impact of laser power, scan speed, and layer thickness on the surface roughness of SS316L printed specimens. In addition, the determination of the optimal combination of operating parameters improves surface quality. This study’s findings make a substantial contribution to the advancement of 3D printing technology and provide valuable insights for industries seeking to employ the DMLS technique with SS316L for manufacturing applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Babu, V.V.P., V.K., G.B.: A review on 3D printing process on metals and their surface roughness and dimensional accuracy. Mater. Today: Proc. 64, 523–530 (2022) Babu, V.V.P., V.K., G.B.: A review on 3D printing process on metals and their surface roughness and dimensional accuracy. Mater. Today: Proc. 64, 523–530 (2022)
5.
go back to reference Sun, Z., Vladimirov, G., Nikolaev, E., Velásquez-García, L.F.: Exploration of metal 3-D printing technologies for the microfabrication of freeform, finely featured, mesoscaled structures. J. Microelectromech. Syst. 27(6), 1171–1185 (2018)CrossRef Sun, Z., Vladimirov, G., Nikolaev, E., Velásquez-García, L.F.: Exploration of metal 3-D printing technologies for the microfabrication of freeform, finely featured, mesoscaled structures. J. Microelectromech. Syst. 27(6), 1171–1185 (2018)CrossRef
6.
go back to reference Wei, C., Li, L., Zhang, X., Chueh, Y.H.: 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. 67(1), 245–248 (2018)CrossRef Wei, C., Li, L., Zhang, X., Chueh, Y.H.: 3D printing of multiple metallic materials via modified selective laser melting. CIRP Ann. 67(1), 245–248 (2018)CrossRef
7.
go back to reference Uçak, N., Çiçek, A., Aslantas, K.: Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review. J. Manuf. Process. 80, 414–457 (2022)CrossRef Uçak, N., Çiçek, A., Aslantas, K.: Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review. J. Manuf. Process. 80, 414–457 (2022)CrossRef
8.
go back to reference Chueh, Y.H., Wei, C., Zhang, X., Li, L.: Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects. Additive Manuf. 31, 100928 (2020)CrossRef Chueh, Y.H., Wei, C., Zhang, X., Li, L.: Integrated laser-based powder bed fusion and fused filament fabrication for three-dimensional printing of hybrid metal/polymer objects. Additive Manuf. 31, 100928 (2020)CrossRef
9.
go back to reference Nazir, A., Jeng, J.Y.: A high-speed additive manufacturing approach for achieving high printing speed and accuracy. Proc. Institution Mech. Eng. Part. C: J. Mech. Eng. Sci. 234(14), 2741–2749 (2020)CrossRef Nazir, A., Jeng, J.Y.: A high-speed additive manufacturing approach for achieving high printing speed and accuracy. Proc. Institution Mech. Eng. Part. C: J. Mech. Eng. Sci. 234(14), 2741–2749 (2020)CrossRef
10.
go back to reference Tee, Y.L., Tran, P., Leary, M., Pille, P., Brandt, M.: 3D Printing of Polymer composites with material jetting: Mechanical and fractographic analysis. Additive Manuf. 36, 101558 (2020)CrossRef Tee, Y.L., Tran, P., Leary, M., Pille, P., Brandt, M.: 3D Printing of Polymer composites with material jetting: Mechanical and fractographic analysis. Additive Manuf. 36, 101558 (2020)CrossRef
11.
go back to reference Chin, S.Y., Dikshit, V., Meera Priyadarshini, B., Zhang, Y.: Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines. 11(7), 658 (2020)CrossRef Chin, S.Y., Dikshit, V., Meera Priyadarshini, B., Zhang, Y.: Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines. 11(7), 658 (2020)CrossRef
12.
go back to reference Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Brazilian Soc. Mech. Sci. Eng. 42, 1–10 (2020)CrossRef Pant, P., Chatterjee, D., Samanta, S.K., Nandi, T., Lohar, A.K.: A bottom-up approach to experimentally investigate the deposition of austenitic stainless steel in laser direct metal deposition system. J. Brazilian Soc. Mech. Sci. Eng. 42, 1–10 (2020)CrossRef
13.
go back to reference Hassan, W., Farid, M.A., Tosi, A., Rane, K., Strano, M.: The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts. Int. J. Adv. Manuf. Technol. 114, 3057–3067 (2021)CrossRef Hassan, W., Farid, M.A., Tosi, A., Rane, K., Strano, M.: The effect of printing parameters on sintered properties of extrusion-based additively manufactured stainless steel 316L parts. Int. J. Adv. Manuf. Technol. 114, 3057–3067 (2021)CrossRef
14.
go back to reference Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P., Chmielus, M.: Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 119, 100707 (2021)CrossRef Mostafaei, A., Elliott, A.M., Barnes, J.E., Li, F., Tan, W., Cramer, C.L., Nandwana, P., Chmielus, M.: Binder jet 3D printing—process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 119, 100707 (2021)CrossRef
15.
go back to reference Citarella, R., Giannella, V.: Additive manufacturing in industry. Applied Sciences, 11(2), p.840. (2021) Citarella, R., Giannella, V.: Additive manufacturing in industry. Applied Sciences, 11(2), p.840. (2021)
16.
go back to reference Budzik, G., Woźniak, J., Paszkiewicz, A., Przeszłowski, Ł., Dziubek, T., Dębski, M.: Methodology for the quality control process of additive manufacturing products made of polymer materials. Materials, 14(9), p.2202. (2021) Budzik, G., Woźniak, J., Paszkiewicz, A., Przeszłowski, Ł., Dziubek, T., Dębski, M.: Methodology for the quality control process of additive manufacturing products made of polymer materials. Materials, 14(9), p.2202. (2021)
17.
go back to reference Zaifuddin, A.Q., Afiq, M.D., Aiman, M.H., Quazi, M.M., Ishak, M.: October. Effect of Laser Surface Modification on SS316L Surface Roughness and Laser Heating Temperature. In International Conference on Mechanical Engineering Research (pp. 959–969). Singapore: Springer Nature Singapore. (2021) Zaifuddin, A.Q., Afiq, M.D., Aiman, M.H., Quazi, M.M., Ishak, M.: October. Effect of Laser Surface Modification on SS316L Surface Roughness and Laser Heating Temperature. In International Conference on Mechanical Engineering Research (pp. 959–969). Singapore: Springer Nature Singapore. (2021)
18.
go back to reference Brancewicz-Steinmetz, E., Sawicki, J., Byczkowska, P.: The influence of 3D printing parameters on adhesion between polylactic acid (PLA) and thermoplastic polyurethane (TPU). Materials. 14(21), 6464 (2021)CrossRef Brancewicz-Steinmetz, E., Sawicki, J., Byczkowska, P.: The influence of 3D printing parameters on adhesion between polylactic acid (PLA) and thermoplastic polyurethane (TPU). Materials. 14(21), 6464 (2021)CrossRef
19.
go back to reference Boban, J., Ahmed, A.: Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J. Mater. Process. Technol. 291, 117013 (2021)CrossRef Boban, J., Ahmed, A.: Improving the surface integrity and mechanical properties of additive manufactured stainless steel components by wire electrical discharge polishing. J. Mater. Process. Technol. 291, 117013 (2021)CrossRef
20.
go back to reference Zhan, Z., Li, H.: Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int. J. Fatigue. 142, 105941 (2021)CrossRef Zhan, Z., Li, H.: Machine learning based fatigue life prediction with effects of additive manufacturing process parameters for printed SS 316L. Int. J. Fatigue. 142, 105941 (2021)CrossRef
21.
go back to reference Koo, J., Park, E., Baek, A.M.C., Kim, N.: August. The Research of Surface Roughness Prediction with Machine Learning According to Process Parameters in Laser Powder Bed Fusion. In International Conference on Advanced Surface Enhancement (pp. 62–65). Singapore: Springer Singapore. (2021) Koo, J., Park, E., Baek, A.M.C., Kim, N.: August. The Research of Surface Roughness Prediction with Machine Learning According to Process Parameters in Laser Powder Bed Fusion. In International Conference on Advanced Surface Enhancement (pp. 62–65). Singapore: Springer Singapore. (2021)
22.
go back to reference Du, Y., Mukherjee, T., Finch, N., De, A., DebRoy, T.: High-throughput screening of surface roughness during additive manufacturing. J. Manuf. Process. 81, 65–77 (2022)CrossRef Du, Y., Mukherjee, T., Finch, N., De, A., DebRoy, T.: High-throughput screening of surface roughness during additive manufacturing. J. Manuf. Process. 81, 65–77 (2022)CrossRef
23.
go back to reference Ghosh, A., Kumar, A., Wang, X., Kietzig, A.M., Brochu, M.: Analysis of the effect of surface morphology on tensile behavior of LPBF SS316L microstruts. Mater. Sci. Engineering: A. 831, 142226 (2022)CrossRef Ghosh, A., Kumar, A., Wang, X., Kietzig, A.M., Brochu, M.: Analysis of the effect of surface morphology on tensile behavior of LPBF SS316L microstruts. Mater. Sci. Engineering: A. 831, 142226 (2022)CrossRef
24.
go back to reference Singh, R., Sidhu, J.S., Rishab, Pabla, B.S., Kumar, A.: Three-dimensional printing of innovative intramedullary pin profiles with direct metal laser sintering. J. Mater. Eng. Perform. 31(1), 240–253 (2022)CrossRef Singh, R., Sidhu, J.S., Rishab, Pabla, B.S., Kumar, A.: Three-dimensional printing of innovative intramedullary pin profiles with direct metal laser sintering. J. Mater. Eng. Perform. 31(1), 240–253 (2022)CrossRef
25.
go back to reference Ramazani, H., Kami, A.: Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review. Progress Additive Manuf. 7(4), 609–626 (2022)CrossRef Ramazani, H., Kami, A.: Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review. Progress Additive Manuf. 7(4), 609–626 (2022)CrossRef
26.
go back to reference Koker, B., Ruckdashel, R., Abajorga, H., Curcuru, N., Pugatch, M., Dunn, R., Kazmer, D.O., Wetzel, E.D., Park, J.H.: Enhanced interlayer strength and thermal stability via dual material filament for material extrusion additive manufacturing. Additive Manuf. 55, 102807 (2022)CrossRef Koker, B., Ruckdashel, R., Abajorga, H., Curcuru, N., Pugatch, M., Dunn, R., Kazmer, D.O., Wetzel, E.D., Park, J.H.: Enhanced interlayer strength and thermal stability via dual material filament for material extrusion additive manufacturing. Additive Manuf. 55, 102807 (2022)CrossRef
27.
go back to reference Sharma, S.K., Singh, A.K., Mishra, R.K., Shukla, A.K., Sharma, C.: Processing Techniques, Microstructural and Mechanical Properties of Additive Manufactured 316L Stainless Steel. Journal of The Institution of Engineers (India): Series D, pp.1–14. (2023) Sharma, S.K., Singh, A.K., Mishra, R.K., Shukla, A.K., Sharma, C.: Processing Techniques, Microstructural and Mechanical Properties of Additive Manufactured 316L Stainless Steel. Journal of The Institution of Engineers (India): Series D, pp.1–14. (2023)
28.
go back to reference Theeda, S., Jagdale, S.H., Ravichander, B.B., Kumar, G.: Optimization of process parameters in laser powder Bed Fusion of SS 316L Parts using Artificial neural networks. Metals. 13(5), 842 (2023)CrossRef Theeda, S., Jagdale, S.H., Ravichander, B.B., Kumar, G.: Optimization of process parameters in laser powder Bed Fusion of SS 316L Parts using Artificial neural networks. Metals. 13(5), 842 (2023)CrossRef
29.
go back to reference Liu, Z., Yang, Y., Song, C., Zhou, H., Chen, Z., Liu, Z., Jiang, R., Zhou, Z., Wang, D.: The surface quality, microstructure and properties of SS316L using a variable area scan strategy during quad-laser large-scale powder bed fusion. Mater. Sci. Engineering: A. 871, 144450 (2023)CrossRef Liu, Z., Yang, Y., Song, C., Zhou, H., Chen, Z., Liu, Z., Jiang, R., Zhou, Z., Wang, D.: The surface quality, microstructure and properties of SS316L using a variable area scan strategy during quad-laser large-scale powder bed fusion. Mater. Sci. Engineering: A. 871, 144450 (2023)CrossRef
30.
go back to reference Pradhan, S.R., Singh, R., Banwait, S.S.: 3D Printing assisted investment casting of Dental crowns for recycling of DMLS Waste. Arab. J. Sci. Eng. 48(3), 3289–3299 (2023)CrossRef Pradhan, S.R., Singh, R., Banwait, S.S.: 3D Printing assisted investment casting of Dental crowns for recycling of DMLS Waste. Arab. J. Sci. Eng. 48(3), 3289–3299 (2023)CrossRef
31.
go back to reference Ramkumar, P.L., Rijwani, T.: Additive manufacturing of metals and ceramics using hybrid fused filament fabrication. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(10), p.455. (2022) Ramkumar, P.L., Rijwani, T.: Additive manufacturing of metals and ceramics using hybrid fused filament fabrication. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(10), p.455. (2022)
32.
go back to reference Dayal, R., Chaudhary, A., Verma, D., Verma, J.: A Comprehensive Review on Effect of DMLS process parameters and Post Processing on Quality of product in Biomedical Field. Int. J. Sci. Res. Mod. Sci. Technol. 2(5), 01–21 (2023) Dayal, R., Chaudhary, A., Verma, D., Verma, J.: A Comprehensive Review on Effect of DMLS process parameters and Post Processing on Quality of product in Biomedical Field. Int. J. Sci. Res. Mod. Sci. Technol. 2(5), 01–21 (2023)
33.
go back to reference Abhilash, P.M., Ahmed, A.: Convolutional neural network–based classification for improving the surface quality of metal additive manufactured components. Int. J. Adv. Manuf. Technol., pp.1–13. (2023) Abhilash, P.M., Ahmed, A.: Convolutional neural network–based classification for improving the surface quality of metal additive manufactured components. Int. J. Adv. Manuf. Technol., pp.1–13. (2023)
34.
go back to reference Farooq, M.U., Anwar, S., Ullah, R., Guerra, R.H.: Sustainable machining of additive manufactured SS-316L underpinning low carbon manufacturing goal. J. Mater. Res. Technol. 24, 2299–2318 (2023)CrossRef Farooq, M.U., Anwar, S., Ullah, R., Guerra, R.H.: Sustainable machining of additive manufactured SS-316L underpinning low carbon manufacturing goal. J. Mater. Res. Technol. 24, 2299–2318 (2023)CrossRef
35.
go back to reference Humnabad, P.S., Tarun, R., Das, I.: An Overview of Direct Metal Laser Sintering (DMLS) Technology for Metal 3D Printing, p. 70. Journal of Mines, Metals & Fuels (2022) Humnabad, P.S., Tarun, R., Das, I.: An Overview of Direct Metal Laser Sintering (DMLS) Technology for Metal 3D Printing, p. 70. Journal of Mines, Metals & Fuels (2022)
36.
go back to reference Pradhan, S.R., Singh, R., Banwait, S.S.: On 3D printing of dental crowns with direct metal laser sintering for canine. J. Mech. Sci. Technol. 36(8), 4197–4203 (2022)CrossRef Pradhan, S.R., Singh, R., Banwait, S.S.: On 3D printing of dental crowns with direct metal laser sintering for canine. J. Mech. Sci. Technol. 36(8), 4197–4203 (2022)CrossRef
37.
go back to reference Avanzini, A.: Fatigue behavior of additively manufactured stainless steel 316L. Materials. 16(1), 65 (2022)CrossRef Avanzini, A.: Fatigue behavior of additively manufactured stainless steel 316L. Materials. 16(1), 65 (2022)CrossRef
38.
go back to reference Dubey, Y., Sharma, P., Singh, M.P.: Optimization Using Genetic Algorithm of GMAW Parameters for Charpy Impact test of 080M40 Steel, pp. 1–11. International Journal on Interactive Design and Manufacturing (IJIDeM) (2023) Dubey, Y., Sharma, P., Singh, M.P.: Optimization Using Genetic Algorithm of GMAW Parameters for Charpy Impact test of 080M40 Steel, pp. 1–11. International Journal on Interactive Design and Manufacturing (IJIDeM) (2023)
39.
go back to reference Chen, Y., Zhang, X., Ding, D., Wang, X., Zhang, K., Liu, Y., Lu, T., Tu, S.: Integration of Interlayer Surface Enhancement Technologies into Metal Additive Manufacturing: A Review. Journal of Materials Science & Technology (2023) Chen, Y., Zhang, X., Ding, D., Wang, X., Zhang, K., Liu, Y., Lu, T., Tu, S.: Integration of Interlayer Surface Enhancement Technologies into Metal Additive Manufacturing: A Review. Journal of Materials Science & Technology (2023)
40.
go back to reference Alharbi, N.: Corrosion resistance of 3D printed SS316L post-processed by ultrasonic shot peening at optimum energy level. Proc. Institution Mech. Eng. Part. B: J. Eng. Manuf. 237(5), 745–757 (2023)CrossRef Alharbi, N.: Corrosion resistance of 3D printed SS316L post-processed by ultrasonic shot peening at optimum energy level. Proc. Institution Mech. Eng. Part. B: J. Eng. Manuf. 237(5), 745–757 (2023)CrossRef
41.
go back to reference Sampath, V.K., Silori, P., Paradkar, P., Niauzorau, S., Sharstniou, A., Hasib, A., Villalobos, S., Azeredo, B.: 3d printing of stainless steel 316L and its weldability for corrosive environments. Mater. Sci. Engineering: A. 833, 142439 (2022)CrossRef Sampath, V.K., Silori, P., Paradkar, P., Niauzorau, S., Sharstniou, A., Hasib, A., Villalobos, S., Azeredo, B.: 3d printing of stainless steel 316L and its weldability for corrosive environments. Mater. Sci. Engineering: A. 833, 142439 (2022)CrossRef
42.
go back to reference Era, I.Z., Grandhi, M., Liu, Z.: Prediction of mechanical behaviors of L-DED fabricated SS 316L parts via machine learning. Int. J. Adv. Manuf. Technol. 121(3–4), 2445–2459 (2022)CrossRef Era, I.Z., Grandhi, M., Liu, Z.: Prediction of mechanical behaviors of L-DED fabricated SS 316L parts via machine learning. Int. J. Adv. Manuf. Technol. 121(3–4), 2445–2459 (2022)CrossRef
43.
go back to reference Raja, S., Rajan, J., Praveen Kumar, A., Rajeswari, V., Girija, N., Modak, M., Kumar, S.V., R. and, Mammo, W.D.: Selection of additive manufacturing machine using analytical hierarchy process. Scientific Programming, 2022. (2022) Raja, S., Rajan, J., Praveen Kumar, A., Rajeswari, V., Girija, N., Modak, M., Kumar, S.V., R. and, Mammo, W.D.: Selection of additive manufacturing machine using analytical hierarchy process. Scientific Programming, 2022. (2022)
44.
go back to reference ÇETİNKAYA, C., KABAK, M. and, ÖZCEYLAN, E.: 3D printer selection by using fuzzy analytic hierarchy process and PROMETHEE. Bilişim Teknolojileri Dergisi. 10(4), 371–380 (2017) ÇETİNKAYA, C., KABAK, M. and, ÖZCEYLAN, E.: 3D printer selection by using fuzzy analytic hierarchy process and PROMETHEE. Bilişim Teknolojileri Dergisi. 10(4), 371–380 (2017)
45.
go back to reference Ransikarbum, K., Leksomboon, R.: April. Analytic hierarchy process approach for healthcare educational media selection: Additive manufacturing inspired study. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 154–158). IEEE. (2021) Ransikarbum, K., Leksomboon, R.: April. Analytic hierarchy process approach for healthcare educational media selection: Additive manufacturing inspired study. In 2021 IEEE 8th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 154–158). IEEE. (2021)
46.
go back to reference Ransikarbum, K., Pitakaso, R., Kim, N.: A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Appl. Sci. 10(15), 5159 (2020)CrossRef Ransikarbum, K., Pitakaso, R., Kim, N.: A decision-support model for additive manufacturing scheduling using an integrative analytic hierarchy process and multi-objective optimization. Appl. Sci. 10(15), 5159 (2020)CrossRef
47.
go back to reference Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008) Saaty, T.L.: Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1(1), 83–98 (2008)
48.
go back to reference Jayawardena, S., Gopura, R.A.R.C.: Analytical hierarchical process in decision making. In: Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers, pp. 164–179. IGI Global (2023) Jayawardena, S., Gopura, R.A.R.C.: Analytical hierarchical process in decision making. In: Social Research Methodology and Publishing Results: A Guide to Non-Native English Speakers, pp. 164–179. IGI Global (2023)
49.
go back to reference Geetha, N., Pappula, B.: Integrated AHP and WED based Approach to select optimal combination of operating parameters on Spark Ignition Engine, SAE Technical Paper 2019-01-0025, 2019. Geetha, N., Pappula, B.: Integrated AHP and WED based Approach to select optimal combination of operating parameters on Spark Ignition Engine, SAE Technical Paper 2019-01-0025, 2019.
50.
go back to reference Saranya, T., Saravanan, S.: Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int. J. Environ. Sci. Technol. 20(2), 1837–1856 (2023)CrossRef Saranya, T., Saravanan, S.: Assessment of groundwater vulnerability using analytical hierarchy process and evidential belief function with DRASTIC parameters, Cuddalore, India. Int. J. Environ. Sci. Technol. 20(2), 1837–1856 (2023)CrossRef
51.
go back to reference Mu, E., Pereyra-Rojas, M.: Practical Decision Making Using Super Decisions v3: An Introduction to the Analytic Hierarchy Process. Springer (2017) Mu, E., Pereyra-Rojas, M.: Practical Decision Making Using Super Decisions v3: An Introduction to the Analytic Hierarchy Process. Springer (2017)
52.
go back to reference Saaty, T.L.: Deriving the AHP 1–9 scale from first principles. Proceedings 6th ISAHP. Berna, Suiza, pp.397–402. (2001) Saaty, T.L.: Deriving the AHP 1–9 scale from first principles. Proceedings 6th ISAHP. Berna, Suiza, pp.397–402. (2001)
53.
go back to reference Geetha, N.K., Bridjesh, P.: AHP approach to select optimum operating parameters on engine. Int. J. Pure App Math. 119(12), 2291–2301 (2018) Geetha, N.K., Bridjesh, P.: AHP approach to select optimum operating parameters on engine. Int. J. Pure App Math. 119(12), 2291–2301 (2018)
Metadata
Title
An experimental investigation on surface quality of 3D metal printed SS316L by direct metal laser sintering technique
Authors
Vemuri Venkata Phani Babu
Veeresh Kumar GB
Praveen Barmavatu
Publication date
22-04-2024
Publisher
Springer Paris
Published in
International Journal on Interactive Design and Manufacturing (IJIDeM)
Print ISSN: 1955-2513
Electronic ISSN: 1955-2505
DOI
https://doi.org/10.1007/s12008-024-01801-6

Premium Partner