Skip to main content
Top
Published in: Experimental Mechanics 4/2013

01-04-2013

An Experimental Model to Simulate Arterial Pulsatile Flow: In Vitro Pressure and Pressure Gradient Wave Study

Authors: A. Anssari-Benam, T. Korakianitis

Published in: Experimental Mechanics | Issue 4/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A new experimental model developed to simulate arterial pulsatile flow is presented in this paper. As a representative example, the flow characteristics and the properties of brachial artery were adopted for the purpose of this study. With the physiological flow of the human brachial artery as the input, the pressure and pressure gradient waves under healthy and different scenarios mimicking diseased conditions were simulated. The diseased conditions include the increase in blood viscosity (reflecting the elevation of hematocrit), stiffening of the arterial wall, and stiffening of the aortic root as the coupling between the heart and arterial tree, presented by the Windkessel element in the setup. Each of these conditions resulted in certain effects on the propagation of the pressure and pressure gradient waves, as well as their patterns and values, investigated experimentally. The results suggest that the pressure wave dampens at arterial sites with higher hematocrit, while the stiffening of the Windkessel element elevated the diastolic pressure, and lowered the pressure drop, similar to the results observed by stiffening the arterial wall. Based on these results, it is hypothesised that the cardiovascular system may not function within the minimum energy consumption criterion, contrary to some other physiological functions.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics 2010 update: a report from the American Heart Association. Circ 121:e46–e215CrossRef Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics 2010 update: a report from the American Heart Association. Circ 121:e46–e215CrossRef
2.
go back to reference Nerem RM (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomed Eng 114:274–282 Nerem RM (1992) Vascular fluid mechanics, the arterial wall, and atherosclerosis. J Biomed Eng 114:274–282
3.
go back to reference Frangos SG, Gahtan V, Sumpio B (1999) Localization of atherosclerosis, role of hemodynamics. Arch Surg 134:1142–1149CrossRef Frangos SG, Gahtan V, Sumpio B (1999) Localization of atherosclerosis, role of hemodynamics. Arch Surg 134:1142–1149CrossRef
4.
go back to reference Feldman CL, Stone PH (2000) Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Cur Opin Cardiol 15:430–440CrossRef Feldman CL, Stone PH (2000) Intravascular hemodynamic factors responsible for progression of coronary atherosclerosis and development of vulnerable plaque. Cur Opin Cardiol 15:430–440CrossRef
6.
go back to reference Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, Van Tol R, Duncker DJ, Robbers-Visser D, Ursem NTC, Van Haperen R, Wentzel JJ, Gijsen F, van der Steen AFW, de Crom R, Krams R (2007) Large variations in absolute wall shear stress levels within one species and between species. Atheroscl 195:225–235CrossRef Cheng C, Helderman F, Tempel D, Segers D, Hierck B, Poelmann R, Van Tol R, Duncker DJ, Robbers-Visser D, Ursem NTC, Van Haperen R, Wentzel JJ, Gijsen F, van der Steen AFW, de Crom R, Krams R (2007) Large variations in absolute wall shear stress levels within one species and between species. Atheroscl 195:225–235CrossRef
7.
go back to reference Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscl Thromb Vascular Bio 18:677–685CrossRef Traub O, Berk BC (1998) Laminar shear stress: mechanisms by which endothelial cells transduce an atheroprotective force. Arterioscl Thromb Vascular Bio 18:677–685CrossRef
8.
go back to reference Yamaguchi R (1999) Flow structure and variation of wall shear stress in assymetrical arterial branch. J Fluids Struc 13:429–442CrossRef Yamaguchi R (1999) Flow structure and variation of wall shear stress in assymetrical arterial branch. J Fluids Struc 13:429–442CrossRef
9.
go back to reference Gimbrone MA Jr (1999) Endothelial Dysfunction, Hemodynamic Forces, and Atherosclerosis. Thromb Haemostasis 82:722–726 Gimbrone MA Jr (1999) Endothelial Dysfunction, Hemodynamic Forces, and Atherosclerosis. Thromb Haemostasis 82:722–726
10.
go back to reference Pohlman TH, Harlan JMM (2000) Adaptive responses of the endothelium to stress. J Surg Res 89:85–119CrossRef Pohlman TH, Harlan JMM (2000) Adaptive responses of the endothelium to stress. J Surg Res 89:85–119CrossRef
11.
go back to reference Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL (2007) Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Euro Heart J 28:705–710CrossRef Stone PH, Coskun AU, Kinlay S, Popma JJ, Sonka M, Wahle A, Yeghiazarians Y, Maynard C, Kuntz RE, Feldman CL (2007) Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Euro Heart J 28:705–710CrossRef
13.
go back to reference Liepsch D (2002) An introduction to biofluid mechanics-basic models and applications. J Biomech 35:415–435CrossRef Liepsch D (2002) An introduction to biofluid mechanics-basic models and applications. J Biomech 35:415–435CrossRef
14.
go back to reference Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115:588–594CrossRef Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115:588–594CrossRef
15.
go back to reference Fujimoto S, Mizuno R, Saito Y, Nakamura S (2004) Clinical application of wave intensity for the treatment of essential hypertension. Heart Vess 19:19–22CrossRef Fujimoto S, Mizuno R, Saito Y, Nakamura S (2004) Clinical application of wave intensity for the treatment of essential hypertension. Heart Vess 19:19–22CrossRef
16.
go back to reference Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C (2006) Assessment of vascular wall shear stress and implications for atherosclerotic disease: Review. Int J Cardio 113:12–18CrossRef Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C (2006) Assessment of vascular wall shear stress and implications for atherosclerotic disease: Review. Int J Cardio 113:12–18CrossRef
17.
go back to reference Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253–280MathSciNetMATHCrossRef Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253–280MathSciNetMATHCrossRef
18.
go back to reference Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Ann Rev Fluid Mech 36:197–231MathSciNetCrossRef Taylor CA, Draney MT (2004) Experimental and computational methods in cardiovascular fluid mechanics. Ann Rev Fluid Mech 36:197–231MathSciNetCrossRef
19.
go back to reference Taylor CA, Cheng CP, Espinosa LA, Tang BT, Parker D, Herfkens RJ (2002) In Vivo Quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann Biomed Eng 30:402–408CrossRef Taylor CA, Cheng CP, Espinosa LA, Tang BT, Parker D, Herfkens RJ (2002) In Vivo Quantification of blood flow and wall shear stress in the human abdominal aorta during lower limb exercise. Ann Biomed Eng 30:402–408CrossRef
20.
go back to reference Vennemann P, Lindken R, Westerweel J (2007) In vivo whole-field blood velocity measurement techniques: Review. Exp Fluids 42:495–511CrossRef Vennemann P, Lindken R, Westerweel J (2007) In vivo whole-field blood velocity measurement techniques: Review. Exp Fluids 42:495–511CrossRef
21.
go back to reference Mekkaoui C, Friggi A, Rolland PH, Bodard H, Piquet P, Bartoli JM, Mesana T (2001) Simultaneous measurements of arterial diameter and blood pressure to determine the arterial compliance, wall mechanics and stresses In vivo. Euro J Vasc Endovasc Surg 21:208–213CrossRef Mekkaoui C, Friggi A, Rolland PH, Bodard H, Piquet P, Bartoli JM, Mesana T (2001) Simultaneous measurements of arterial diameter and blood pressure to determine the arterial compliance, wall mechanics and stresses In vivo. Euro J Vasc Endovasc Surg 21:208–213CrossRef
22.
go back to reference Borghi A, Wood NB, Mohiaddin RH, Xu XY (2008) Fluid–solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study. J Fluids Struc 24:270–280CrossRef Borghi A, Wood NB, Mohiaddin RH, Xu XY (2008) Fluid–solid interaction simulation of flow and stress pattern in thoracoabdominal aneurysms: a patient-specific study. J Fluids Struc 24:270–280CrossRef
23.
go back to reference Korakianitis T, Shi Y (2006) Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J Biomech 39:1964–1982CrossRef Korakianitis T, Shi Y (2006) Numerical simulation of cardiovascular dynamics with healthy and diseased heart valves. J Biomech 39:1964–1982CrossRef
24.
go back to reference Zendehboodi GR, Moayeri MS (1999) Comparison of physiological and simple pulsatile flows through stenosed arteries. J Biomech 32:959–965CrossRef Zendehboodi GR, Moayeri MS (1999) Comparison of physiological and simple pulsatile flows through stenosed arteries. J Biomech 32:959–965CrossRef
25.
go back to reference Matthys KS, Alastruey J, Peiro J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin SJ (2007) Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J Biomech 40:3476–3486CrossRef Matthys KS, Alastruey J, Peiro J, Khir AW, Segers P, Verdonck PR, Parker KH, Sherwin SJ (2007) Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J Biomech 40:3476–3486CrossRef
26.
go back to reference Deplano V, Siouffi M (1999) Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. J Biomech 32:1081–1090CrossRef Deplano V, Siouffi M (1999) Experimental and numerical study of pulsatile flows through stenosis: wall shear stress analysis. J Biomech 32:1081–1090CrossRef
27.
go back to reference Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three dimensional thick-wall model with fluid-wall interactions. J Biomed Eng 123:448–557 Tang D, Yang C, Kobayashi S, Ku DN (2001) Steady flow and wall compression in stenotic arteries: a three dimensional thick-wall model with fluid-wall interactions. J Biomed Eng 123:448–557
28.
go back to reference Sioufi M, Pélissier R, Farahifar D, Rieu R (1984) The effect of unsteadiness on the flow through stenoses and bifurcations. J Biomech 17:299–315CrossRef Sioufi M, Pélissier R, Farahifar D, Rieu R (1984) The effect of unsteadiness on the flow through stenoses and bifurcations. J Biomech 17:299–315CrossRef
29.
go back to reference Sioufi M, Deplano V, Pélissier R (1998) Experimental analysis of unsteady flows through a stenosis. J Biomech 31:11–19CrossRef Sioufi M, Deplano V, Pélissier R (1998) Experimental analysis of unsteady flows through a stenosis. J Biomech 31:11–19CrossRef
30.
go back to reference Tang D, Yang C, Ku DN (1999) A 3-D thin-wall model with fluid–structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses. Comput Struc 72:357–377MATHCrossRef Tang D, Yang C, Ku DN (1999) A 3-D thin-wall model with fluid–structure interactions for blood flow in carotid arteries with symmetric and asymmetric stenoses. Comput Struc 72:357–377MATHCrossRef
31.
go back to reference Belz GG (1995) Elastic properties and the windkessel function of the human aorta. Cardio Drugs Therapy 9:73–83CrossRef Belz GG (1995) Elastic properties and the windkessel function of the human aorta. Cardio Drugs Therapy 9:73–83CrossRef
32.
go back to reference Maurits NM, Loots GE, Veldman AEP (2007) The influence of vessel wall elasticity and peripheral resistance on the carotid artery flow wave form: A CFD model compared to in vivo ultrasound measurements. J Biomech 40:427–436CrossRef Maurits NM, Loots GE, Veldman AEP (2007) The influence of vessel wall elasticity and peripheral resistance on the carotid artery flow wave form: A CFD model compared to in vivo ultrasound measurements. J Biomech 40:427–436CrossRef
33.
go back to reference Beulen BWAMM, Rutten MCM, van de Vosse FN (2009) A time-periodic approach for fluid–structure interaction in distensible vessels. J Fluids Struc 25:954–966CrossRef Beulen BWAMM, Rutten MCM, van de Vosse FN (2009) A time-periodic approach for fluid–structure interaction in distensible vessels. J Fluids Struc 25:954–966CrossRef
34.
go back to reference Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries, 5th edn. Oxford University Press Inc., New York Nichols WW, O’Rourke MF (2005) McDonald’s blood flow in arteries, 5th edn. Oxford University Press Inc., New York
35.
go back to reference Sagawa K, Lie RK, Schaefer J (1990) Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses”. Zeitschrift fur Biologie 37, 483–526 (1899). J Molecul Cell Cardiol 22:253–277CrossRef Sagawa K, Lie RK, Schaefer J (1990) Translation of Otto Frank’s paper “Die Grundform des Arteriellen Pulses”. Zeitschrift fur Biologie 37, 483–526 (1899). J Molecul Cell Cardiol 22:253–277CrossRef
36.
go back to reference Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV (2003) Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physio - Heart Circul Physio 284:H1358–H1368 Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV (2003) Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physio - Heart Circul Physio 284:H1358–H1368
37.
go back to reference Heijden Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Struiker Boudier HA, van Bortel LM (2000) Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hyperten 35:637–642CrossRef Heijden Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Struiker Boudier HA, van Bortel LM (2000) Effect of age on brachial artery wall properties differs from the aorta and is gender dependent: a population study. Hyperten 35:637–642CrossRef
38.
go back to reference Teng Z, Tang D, Zheng J, Woodard PK, Hoffman AH (2009) An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J Biomech 42:2535–2539CrossRef Teng Z, Tang D, Zheng J, Woodard PK, Hoffman AH (2009) An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J Biomech 42:2535–2539CrossRef
39.
go back to reference Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG (2002) Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance. Circ 106:2085–2090CrossRef Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG (2002) Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance. Circ 106:2085–2090CrossRef
40.
go back to reference Lowe A, Harrison W, El-Aklouk E, Ruygrok P, Al-Jumaily AM (2009) Non-invasive model-based estimation of aortic pulse pressure using Suprasystolic brachial pressure wave forms. J Biomech 42:2111–2115CrossRef Lowe A, Harrison W, El-Aklouk E, Ruygrok P, Al-Jumaily AM (2009) Non-invasive model-based estimation of aortic pulse pressure using Suprasystolic brachial pressure wave forms. J Biomech 42:2111–2115CrossRef
41.
go back to reference Fung YC (1997) Biomechanics: Circulation, 2nd edn. Springer-Verlag New York Inc., New YorkCrossRef Fung YC (1997) Biomechanics: Circulation, 2nd edn. Springer-Verlag New York Inc., New YorkCrossRef
42.
go back to reference Fung YC (1993) Biomechanics: Mechanical properties of living tissue, 2nd edn. Springer-Verlag New York Inc., New York Fung YC (1993) Biomechanics: Mechanical properties of living tissue, 2nd edn. Springer-Verlag New York Inc., New York
43.
go back to reference Yap CH, Kim H-S, Balachandran K, Weiler M, Haj-Ali R, Yoganathan AP (2010) Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am J Physiol Heart Circ Physiol 298:H395–H405CrossRef Yap CH, Kim H-S, Balachandran K, Weiler M, Haj-Ali R, Yoganathan AP (2010) Dynamic deformation characteristics of porcine aortic valve leaflet under normal and hypertensive conditions. Am J Physiol Heart Circ Physiol 298:H395–H405CrossRef
44.
go back to reference Sachs MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Phil Trans R Soc B 362:1369–1391CrossRef Sachs MS, Yoganathan AP (2007) Heart valve function: a biomechanical perspective. Phil Trans R Soc B 362:1369–1391CrossRef
45.
go back to reference Li MX, Beech-Brandta JJ, John LR, Hoskins PR, Easson WJ (2007) Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J Biomech 40:3715–3724CrossRef Li MX, Beech-Brandta JJ, John LR, Hoskins PR, Easson WJ (2007) Numerical analysis of pulsatile blood flow and vessel wall mechanics in different degrees of stenoses. J Biomech 40:3715–3724CrossRef
46.
go back to reference Bronzino JD (1999) The biomedical engineering handbook, vol I, 2nd edn. CRC Press, Florida Bronzino JD (1999) The biomedical engineering handbook, vol I, 2nd edn. CRC Press, Florida
47.
go back to reference Womersley JR (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Carpenter Litho & Prtg. Co., Springfield Womersley JR (1957) An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. Carpenter Litho & Prtg. Co., Springfield
Metadata
Title
An Experimental Model to Simulate Arterial Pulsatile Flow: In Vitro Pressure and Pressure Gradient Wave Study
Authors
A. Anssari-Benam
T. Korakianitis
Publication date
01-04-2013
Publisher
Springer US
Published in
Experimental Mechanics / Issue 4/2013
Print ISSN: 0014-4851
Electronic ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-012-9675-4

Other articles of this Issue 4/2013

Experimental Mechanics 4/2013 Go to the issue

Premium Partners