Skip to main content
Top
Published in: Neural Computing and Applications 3/2016

01-04-2016 | Original Article

An exponential approach for the system of nonlinear delay integro-differential equations describing biological species living together

Authors: Şuayip Yüzbaşı, Mehmet Sezer

Published in: Neural Computing and Applications | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, we consider a system of nonlinear delay integro-differential equations with convolution kernels, which arises in biology. This problem characterizes the population dynamics for two separate species. We present an exponential approach based on exponential polynomials for solving this system. This technique reduces the model problem to a matrix equation, which corresponds to a system of nonlinear algebraic equations. Also, illustrative examples related to biological species living together are given to demonstrate the validity and applicability of technique. The comparisons are made with the existing results.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
2.
go back to reference Pougaza D-B (2007) The Lotka integral equation as a stable population model. Postgraduate Essay, African Institute for Mathematical Sciences (AIMS), Muizenberg Pougaza D-B (2007) The Lotka integral equation as a stable population model. Postgraduate Essay, African Institute for Mathematical Sciences (AIMS), Muizenberg
3.
go back to reference Kopeikin ID, Shishkin VP (1984) Integral form of the general solution of equations of steady-state thermoelasticity. J Appl Math Mech (PMM U.S.S.R.) 48(1):117–119MathSciNetCrossRefMATH Kopeikin ID, Shishkin VP (1984) Integral form of the general solution of equations of steady-state thermoelasticity. J Appl Math Mech (PMM U.S.S.R.) 48(1):117–119MathSciNetCrossRefMATH
4.
5.
go back to reference Abdul J (1999) Introduction to integral equations with applications. Wiley, New YorkMATH Abdul J (1999) Introduction to integral equations with applications. Wiley, New YorkMATH
6.
go back to reference Khan Y, Va´zquez-Leal H, Wu Q (2013) An efficient iterated method for mathematical biology model. Neural Comput Appl 23:677–682CrossRef Khan Y, Va´zquez-Leal H, Wu Q (2013) An efficient iterated method for mathematical biology model. Neural Comput Appl 23:677–682CrossRef
7.
go back to reference Dehghan M, Shakeri F (2008) Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Progr Electromag Res 78:361–376CrossRef Dehghan M, Shakeri F (2008) Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Progr Electromag Res 78:361–376CrossRef
8.
go back to reference Khan Y, Taghipour R, Falahian M, Nikkar A (2013) A new approach to modified regularized long wave equation. Neural Comput Appl 23:1335–1341CrossRef Khan Y, Taghipour R, Falahian M, Nikkar A (2013) A new approach to modified regularized long wave equation. Neural Comput Appl 23:1335–1341CrossRef
9.
go back to reference Elmer CE, Van Vleck ES (2002) A variant of Newton’s method for solution of traveling wave solutions of bistable differential-difference equation. J Dyn Differ Equ 14:493–517CrossRefMATH Elmer CE, Van Vleck ES (2002) A variant of Newton’s method for solution of traveling wave solutions of bistable differential-difference equation. J Dyn Differ Equ 14:493–517CrossRefMATH
10.
go back to reference Elmer CE, van Vleck ES (2001) Travelling wave solutions for bistable differential-difference equations with periodic diffusion. SIAM J Appl Math 61:1648–1679MathSciNetCrossRefMATH Elmer CE, van Vleck ES (2001) Travelling wave solutions for bistable differential-difference equations with periodic diffusion. SIAM J Appl Math 61:1648–1679MathSciNetCrossRefMATH
11.
go back to reference Khan Y (2013) A method for solving nonlinear time dependent drainage model. Neural Comput Appl 23:411–415CrossRef Khan Y (2013) A method for solving nonlinear time dependent drainage model. Neural Comput Appl 23:411–415CrossRef
12.
go back to reference Babolian E, Biazar J (2002) Solving the problem of biological species living together by Adomian decomposition method. Appl Math Comput 129:339–343MathSciNetMATH Babolian E, Biazar J (2002) Solving the problem of biological species living together by Adomian decomposition method. Appl Math Comput 129:339–343MathSciNetMATH
13.
go back to reference Shakeri F, Dehghan M (2008) Solution of a model describing biological species living together using the variational iteration method. Math Comput Model 48:685–699MathSciNetCrossRefMATH Shakeri F, Dehghan M (2008) Solution of a model describing biological species living together using the variational iteration method. Math Comput Model 48:685–699MathSciNetCrossRefMATH
14.
go back to reference Yousefi SA (2011) Numerical solution of a model describing biological species living together by using Legendre multiwavelet method. Int J Non Sci 11(1):109–113MathSciNetMATH Yousefi SA (2011) Numerical solution of a model describing biological species living together by using Legendre multiwavelet method. Int J Non Sci 11(1):109–113MathSciNetMATH
15.
go back to reference Shakourifar M, Dehghan M (2008) On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments. Computing 82:241–260MathSciNetCrossRefMATH Shakourifar M, Dehghan M (2008) On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments. Computing 82:241–260MathSciNetCrossRefMATH
16.
go back to reference Adomian G (1990) A review of the decomposition method and some recent results for nonlinear equations. Math Comput Model 13(7):17–43MathSciNetCrossRefMATH Adomian G (1990) A review of the decomposition method and some recent results for nonlinear equations. Math Comput Model 13(7):17–43MathSciNetCrossRefMATH
17.
go back to reference Batiha B, Noorani MSM, Hashim I (2007) Variational iteration method for solving multispecies LotkaVolterra equations. Comput Math Appl 54:903–909MathSciNetCrossRefMATH Batiha B, Noorani MSM, Hashim I (2007) Variational iteration method for solving multispecies LotkaVolterra equations. Comput Math Appl 54:903–909MathSciNetCrossRefMATH
18.
go back to reference Parand K, Razzaghi M (2004) Rational Chebyshev tau method for solving Volterra’s population model. Appl Math Comput 149:893–900MathSciNetMATH Parand K, Razzaghi M (2004) Rational Chebyshev tau method for solving Volterra’s population model. Appl Math Comput 149:893–900MathSciNetMATH
19.
go back to reference Yüzbaşı Ş (2012) Bessel collocation approach for solving continuous population models for single and interacting species. Appl Math Model 36(8):3787–3802MathSciNetCrossRefMATH Yüzbaşı Ş (2012) Bessel collocation approach for solving continuous population models for single and interacting species. Appl Math Model 36(8):3787–3802MathSciNetCrossRefMATH
20.
go back to reference Sedaghat S, Ordokhani Y, Dehghan M (2014) On spectral method for Volterra functional integro-differential equations of neutral type. Numer Funct Anal Optim 35:223–239MathSciNetCrossRefMATH Sedaghat S, Ordokhani Y, Dehghan M (2014) On spectral method for Volterra functional integro-differential equations of neutral type. Numer Funct Anal Optim 35:223–239MathSciNetCrossRefMATH
21.
go back to reference Yüzbaşı Ş (2012) A numerical approach to solve the model for HIV infection of CD4+T cells. Appl Math Model 36(12):5876–5890MathSciNetCrossRef Yüzbaşı Ş (2012) A numerical approach to solve the model for HIV infection of CD4+T cells. Appl Math Model 36(12):5876–5890MathSciNetCrossRef
22.
go back to reference Pamuk S (2005) The decomposition method for continuous population models for single and interacting species. Appl Math Comput 163:79–88MathSciNetMATH Pamuk S (2005) The decomposition method for continuous population models for single and interacting species. Appl Math Comput 163:79–88MathSciNetMATH
23.
go back to reference Dehghan M, Salehi R (2010) Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput Phys Commun 181:1255–1265MathSciNetCrossRefMATH Dehghan M, Salehi R (2010) Solution of a nonlinear time-delay model in biology via semi-analytical approaches. Comput Phys Commun 181:1255–1265MathSciNetCrossRefMATH
24.
go back to reference Pamuk S, Pamuk N (2010) He’s homotopy perturbation method for continuous population models for single and interacting species. Comput Math Appl 59:612–621MathSciNetCrossRefMATH Pamuk S, Pamuk N (2010) He’s homotopy perturbation method for continuous population models for single and interacting species. Comput Math Appl 59:612–621MathSciNetCrossRefMATH
25.
go back to reference Yüzbaşı Ş (2011) A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics. Math Method Appl Sci 34(18):2218–2230MathSciNetMATH Yüzbaşı Ş (2011) A numerical approach for solving a class of the nonlinear Lane-Emden type equations arising in astrophysics. Math Method Appl Sci 34(18):2218–2230MathSciNetMATH
26.
go back to reference Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique. Int J Numer Method Biomed Eng 26:705–715MathSciNetMATH Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique. Int J Numer Method Biomed Eng 26:705–715MathSciNetMATH
27.
go back to reference Merdan M (2007) Homotopy perturbation method for solving a model for HIV infection of CD4+T cells, Istanb. Commer Univ J Sci 12:39–52 Merdan M (2007) Homotopy perturbation method for solving a model for HIV infection of CD4+T cells, Istanb. Commer Univ J Sci 12:39–52
28.
go back to reference Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve turing models in the biological pattern formation. Comput Math Appl 62:4322–4336MathSciNetCrossRefMATH Shakeri F, Dehghan M (2011) The finite volume spectral element method to solve turing models in the biological pattern formation. Comput Math Appl 62:4322–4336MathSciNetCrossRefMATH
29.
go back to reference Yüzbaşı Ş (2013) A numerical approximation for Volterra’s population growth model with fractional order. Appl Math Model 37(5):3216–3227MathSciNetCrossRef Yüzbaşı Ş (2013) A numerical approximation for Volterra’s population growth model with fractional order. Appl Math Model 37(5):3216–3227MathSciNetCrossRef
30.
go back to reference Khan Y, Vázquez-Leal H, Faraz N (2013) An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. Appl Math Model 37:2702–2708MathSciNetCrossRef Khan Y, Vázquez-Leal H, Faraz N (2013) An auxiliary parameter method using Adomian polynomials and Laplace transformation for nonlinear differential equations. Appl Math Model 37:2702–2708MathSciNetCrossRef
31.
go back to reference Khan Y (2014) A novel Laplace decomposition method for non-linear stretching sheet problem in the presence of MHD and slip condition. Int J Numer Methods Heat Fluid Flow 24:73–85MathSciNetCrossRef Khan Y (2014) A novel Laplace decomposition method for non-linear stretching sheet problem in the presence of MHD and slip condition. Int J Numer Methods Heat Fluid Flow 24:73–85MathSciNetCrossRef
32.
go back to reference Akyüz-Daşcıoğlu A, Sezer M (2005) Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J Franklin Inst 342:688–701MathSciNetCrossRefMATH Akyüz-Daşcıoğlu A, Sezer M (2005) Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J Franklin Inst 342:688–701MathSciNetCrossRefMATH
33.
go back to reference Yüzbaşı Ş, Şahin N, Sezer M (2011) Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput Math Appl 61(10):3079–3096MathSciNetCrossRefMATH Yüzbaşı Ş, Şahin N, Sezer M (2011) Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput Math Appl 61(10):3079–3096MathSciNetCrossRefMATH
34.
go back to reference Khan Y, Sayevand K, Fardi M, Ghasemi M (2014) A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equation. Appl Math Comput 249:229–236MathSciNet Khan Y, Sayevand K, Fardi M, Ghasemi M (2014) A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equation. Appl Math Comput 249:229–236MathSciNet
35.
go back to reference Yüzbaşı Ş, Sezer M (2013) An exponential matrix method for solving systems of linear differential equations. Math Method Appl Sci 36(3):336–348MathSciNetCrossRefMATH Yüzbaşı Ş, Sezer M (2013) An exponential matrix method for solving systems of linear differential equations. Math Method Appl Sci 36(3):336–348MathSciNetCrossRefMATH
36.
go back to reference Alharbi F (2010) Predefined exponential basis set for half-bounded multi domain spectral method. Appl Math 1:146–152CrossRef Alharbi F (2010) Predefined exponential basis set for half-bounded multi domain spectral method. Appl Math 1:146–152CrossRef
37.
go back to reference Alipour MM, Domairry G, Davodi AG (2011) An application of exp-function method to approximate general and explicit solutions for nonlinear Schrodinger equations. Numer Method Part Differ Eqs 27:1016–1025MathSciNetCrossRefMATH Alipour MM, Domairry G, Davodi AG (2011) An application of exp-function method to approximate general and explicit solutions for nonlinear Schrodinger equations. Numer Method Part Differ Eqs 27:1016–1025MathSciNetCrossRefMATH
38.
go back to reference Shanmugam R (1998) Generalized exponential and logarithmic polynomials with statistical applications. Int J Math Educ Sci Technol 19(5):659–669MathSciNetCrossRefMATH Shanmugam R (1998) Generalized exponential and logarithmic polynomials with statistical applications. Int J Math Educ Sci Technol 19(5):659–669MathSciNetCrossRefMATH
39.
40.
go back to reference Ouerdiane H, Ounaies M (2012) Expansion in series of exponential polynomials of mean-priodic functions. Complex Var Elliptic Eqs 57(5):469–487MathSciNetCrossRefMATH Ouerdiane H, Ounaies M (2012) Expansion in series of exponential polynomials of mean-priodic functions. Complex Var Elliptic Eqs 57(5):469–487MathSciNetCrossRefMATH
41.
go back to reference Debrecen LS (2000) On the extension of exponential polynomials. Math Bohem 125(3):365–370MathSciNet Debrecen LS (2000) On the extension of exponential polynomials. Math Bohem 125(3):365–370MathSciNet
42.
go back to reference Ross K (1963) Abstract harmonic analysis I, II. Springer, Berlin Ross K (1963) Abstract harmonic analysis I, II. Springer, Berlin
Metadata
Title
An exponential approach for the system of nonlinear delay integro-differential equations describing biological species living together
Authors
Şuayip Yüzbaşı
Mehmet Sezer
Publication date
01-04-2016
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 3/2016
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-1895-y

Other articles of this Issue 3/2016

Neural Computing and Applications 3/2016 Go to the issue

Premium Partner