Skip to main content
Top
Published in: Theory of Computing Systems 2/2016

01-08-2016

An Improved Approximation Scheme for Variable-Sized Bin Packing

Authors: Klaus Jansen, Stefan Kraft

Published in: Theory of Computing Systems | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The Variable-Sized Bin Packing Problem (abbreviated as VSBPP or VBP) is a well-known generalization of the NP-hard Bin Packing Problem (BP) where the items can be packed in bins of M given sizes. The objective is to minimize the total capacity of the bins used. We present an asymptotic approximation scheme (AFPTAS) for VBP and BP with performance guarantee \(A_{\varepsilon }(I) \leq (1+ \varepsilon )OPT(I) + \mathcal {O}\left ({\log ^{2}\left (\frac {1}{\varepsilon }\right )}\right )\) for any problem instance I and any ε>0. The additive term is much smaller than the additive term of already known AFPTAS. The running time of the algorithm is \(\mathcal {O}\left ({ \frac {1}{\varepsilon ^{6}} \log \left ({\frac {1}{\varepsilon }}\right ) + \log \left ({\frac {1}{\varepsilon }}\right ) n}\right )\) for BP and \(\mathcal {O}\left ({ \frac {1}{{\varepsilon }^{6}} \log ^{2}\left ({\frac {1}{\varepsilon }}\right ) + M + \log \left ({\frac {1}{\varepsilon }}\right )n}\right )\) for VBP, which is an improvement to previously known algorithms. Many approximation algorithms have to solve subproblems, for example instances of the Knapsack Problem (KP) or one of its variants. These subproblems - like KP - are in many cases NP-hard. Our AFPTAS for VBP must in fact solve a generalization of KP, the Knapsack Problem with Inversely Proportional Profits (KPIP). In this problem, one of several knapsack sizes has to be chosen. At the same time, the item profits are inversely proportional to the chosen knapsack size so that the largest knapsack in general does not yield the largest profit. We introduce KPIP in this paper and develop an approximation scheme for KPIP by extending Lawler’s algorithm for KP. Thus, we are able to improve the running time of our AFPTAS for VBP.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Footnotes
1
It should be noted that p(a 1)<p(a 2) does not always imply q(a 1)≤q(a 2). Let p(a 1)=2 k+1 T and p(a 2)=(2 k+1+2 k+1 δ)T for small enough δ>0 such that \(q(a_{1}) = \left \lfloor {\frac {4}{\varepsilon }}\right \rfloor 2^{k} > q(a_{2}) = \left \lfloor {\frac {2 + 2 \delta }{\varepsilon }}\right \rfloor 2^{k+1} = \left \lfloor {\frac {2}{\varepsilon }}\right \rfloor 2^{k+1}\), i.e. \(\left \lfloor {\frac {4}{\varepsilon }}\right \rfloor > 2 \left \lfloor {\frac {2}{\varepsilon }}\right \rfloor \). Values ε>0 for which the latter condition holds can be easily found. However, the possible non-monotonicity does not change the results and proofs in this subsection because the monotonicity is not used. In fact, this subsection uses another order (see e.g. Lemma 40) where \(q_{1}, \ldots , q_{j^{\prime }}\) are the scaled profits in decreasing order for the largest interval (2 k T b ,2 k+1 T b ], the items \(q_{j^{\prime }+1}, \ldots , q_{j^{\prime \prime }}\) are the scaled profits in decreasing order for (2 k−1 T b ,2 k T b ] etc. For simplicity, we assume here that this order corresponds to sorting the q j in non-increasing order (which is true if the scaling monotonicity holds). Moreover, the scaling monotonicity can be guaranteed by assuming without loss of generality that \(\varepsilon = \frac {1}{2^{\kappa }}\) for \(\kappa \in \mathbb {N}\).
 
2
The authors have been able to improve the running time of an FPTAS for UKP to \(\mathcal {O}{(n + \frac {1}{\varepsilon ^2} \log ^3(\frac {1}{\varepsilon }) })\) and for UKPIP to \(\mathcal {O}{(n \log M \!+ \! M \frac {1}{\varepsilon } \log \frac {1}{\varepsilon } \!+ \! \min \{ \lfloor \log \frac {1}{c_{\min }} \rfloor \!+ \! 1, M \} \frac {1}{\varepsilon ^2} \log ^3 \frac {1}{\varepsilon } \!+ \! \min \{ \lfloor \log \frac {1}{c_{\min }} \rfloor \!+ \! 1, M \} \cdot n }\)). This improves the running time of the AFPTAS for Bin Packing to \(\mathcal {O}{(\frac {1}{\varepsilon ^5} \log ^4 \frac {1}{\varepsilon } + \log (\frac {1}{\varepsilon }) n}\)) and the AFPTAS for VBP to \(\mathcal {O}({\frac {1}{\varepsilon ^5} \log ^5 \frac {1}{\varepsilon } + M + \log (\frac {1}{\varepsilon }) n}\)). The first result can be found on arXiv: http://​arXiv.​org/​abs/​1504.​04650. The second result will be published in the PhD thesis of Stefan Kraft. Moreover, Hoberg and Rothvoß have proved that we have \(OPT(I) \leq LIN(I) + \mathcal {O}{(\log LIN(I)})\) for Bin Packing (see arXiv: http://​arXiv.​org/​abs/​1503.​08796).
 
Literature
1.
go back to reference Beling, P.A., Megiddo, N.: Using fast matrix multiplication to find basic solutions. Theor. Comput. Sci. 205(1–2), 307–316 (1998)MathSciNetCrossRefMATH Beling, P.A., Megiddo, N.: Using fast matrix multiplication to find basic solutions. Theor. Comput. Sci. 205(1–2), 307–316 (1998)MathSciNetCrossRefMATH
2.
go back to reference Bellman, R.E.: Dynamic programming. Princeton University Press, Princeton (1957)MATH Bellman, R.E.: Dynamic programming. Princeton University Press, Princeton (1957)MATH
3.
go back to reference Diedrich, F.: Approximation algorithms for linear programs and geometrically constrained packing problems, Ph.D. thesis. Christian-Albrechts-Universität zu Kiel (2009) Diedrich, F.: Approximation algorithms for linear programs and geometrically constrained packing problems, Ph.D. thesis. Christian-Albrechts-Universität zu Kiel (2009)
4.
go back to reference Dósa, G.: The tight bound of first fit decreasing bin-packing algorithm is \(FFD(I) \leq \frac {11}{9}OPT(I) + \frac {6}{9}\). In: Chen, B., Paterson, M., Zhang, G. (eds.) Proceedings of the First International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, ESCAPE 2007, LNCS, vol. 4614, pp 1–11. Springer, Heidelberg (2007) Dósa, G.: The tight bound of first fit decreasing bin-packing algorithm is \(FFD(I) \leq \frac {11}{9}OPT(I) + \frac {6}{9}\). In: Chen, B., Paterson, M., Zhang, G. (eds.) Proceedings of the First International Symposium on Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, ESCAPE 2007, LNCS, vol. 4614, pp 1–11. Springer, Heidelberg (2007)
6.
7.
go back to reference Fernandez, de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+ε in linear time. Combinatorica 1(4), 349–355 (1981)MathSciNetCrossRefMATH Fernandez, de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+ε in linear time. Combinatorica 1(4), 349–355 (1981)MathSciNetCrossRefMATH
8.
go back to reference Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM J. Comput. 15(1), 222–230 (1986)CrossRefMATH Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM J. Comput. 15(1), 222–230 (1986)CrossRefMATH
9.
go back to reference Garey, M., Johnson, D.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Company, New York (1979)MATH Garey, M., Johnson, D.: Computers and intractability. A guide to the theory of NP-completeness. W.H. Freeman and Company, New York (1979)MATH
11.
12.
go back to reference Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate max-min resource sharing for structured concave optimization. SIAM J. Optim. 11(4), 1081–1091 (2001)MathSciNetCrossRefMATH Grigoriadis, M.D., Khachiyan, L.G., Porkolab, L., Villavicencio, J.: Approximate max-min resource sharing for structured concave optimization. SIAM J. Optim. 11(4), 1081–1091 (2001)MathSciNetCrossRefMATH
13.
14.
go back to reference Jansen, K.: Approximation algorithms for min-max and max-min resource sharing problems, and applications. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient approximation and online algorithms, LNCS, vol. 3484, pp 156–202. Springer, Berlin (2006) Jansen, K.: Approximation algorithms for min-max and max-min resource sharing problems, and applications. In: Bampis, E., Jansen, K., Kenyon, C. (eds.) Efficient approximation and online algorithms, LNCS, vol. 3484, pp 156–202. Springer, Berlin (2006)
15.
go back to reference Jansen, K., Kraft, S.: An improved approximation scheme for variable-sized bin packing. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Proceedings of the 37th international symposium on mathematical foundations of computer science, MFCS 2012, LNCS, vol. 7464, pp 529–541. Springer, Heidelberg (2012) Jansen, K., Kraft, S.: An improved approximation scheme for variable-sized bin packing. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) Proceedings of the 37th international symposium on mathematical foundations of computer science, MFCS 2012, LNCS, vol. 7464, pp 529–541. Springer, Heidelberg (2012)
16.
go back to reference Jansen, K., Kraft, S.: An improved knapsack solver for column generation. In: Bulatov, A.A., Shur, A.M. (eds.) Proceedings of the 8th international computer science symposium in Russia, CSR 2013, LNCS, vol. 7913, pp 12–23. Springer, Heidelberg (2013) Jansen, K., Kraft, S.: An improved knapsack solver for column generation. In: Bulatov, A.A., Shur, A.M. (eds.) Proceedings of the 8th international computer science symposium in Russia, CSR 2013, LNCS, vol. 7913, pp 12–23. Springer, Heidelberg (2013)
17.
go back to reference Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306(1–3), 543–551 (2003)MathSciNetCrossRefMATH Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306(1–3), 543–551 (2003)MathSciNetCrossRefMATH
18.
go back to reference Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manag. Sci. 6(4), 366–422 (1960). Significantly enlarged and translated record of a report given in 1939MathSciNetCrossRefMATH Kantorovich, L.V.: Mathematical methods of organizing and planning production. Manag. Sci. 6(4), 366–422 (1960). Significantly enlarged and translated record of a report given in 1939MathSciNetCrossRefMATH
19.
go back to reference Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd annual symposium on foundations of computer science (FOCS 1982), pp 312–320. IEEE Computer Society, Chicago (1982) Karmarkar, N., Karp, R.M.: An efficient approximation scheme for the one-dimensional bin-packing problem. In: 23rd annual symposium on foundations of computer science (FOCS 1982), pp 312–320. IEEE Computer Society, Chicago (1982)
20.
22.
go back to reference Magazine, M.J., Oguz, O.: A fully polynomial approximation algorithm for the 0-1 knapsack problem. Eur. J. Oper. Res. 8(3), 270–273 (1981)MathSciNetCrossRefMATH Magazine, M.J., Oguz, O.: A fully polynomial approximation algorithm for the 0-1 knapsack problem. Eur. J. Oper. Res. 8(3), 270–273 (1981)MathSciNetCrossRefMATH
23.
24.
go back to reference Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Math. Oper. Res. 20, 257–301 (1995)MathSciNetCrossRefMATH Plotkin, S.A., Shmoys, D.B., Tardos, É.: Fast approximation algorithms for fractional packing and covering problems. Math. Oper. Res. 20, 257–301 (1995)MathSciNetCrossRefMATH
25.
go back to reference Rothvoß, T.: Approximating bin packing within O(logO P T⋅ log logO P T) bins. In: 54th Annual IEEE symposium on foundations of computer science, FOCS 2013, pp 20–29. IEEE Computer Society, Chicago (2013)CrossRef Rothvoß, T.: Approximating bin packing within O(logO P T⋅ log logO P T) bins. In: 54th Annual IEEE symposium on foundations of computer science, FOCS 2013, pp 20–29. IEEE Computer Society, Chicago (2013)CrossRef
26.
go back to reference Shachnai, H., Tamir, T., Yehezkely, O.: Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 43(1), 81–98 (2008)MathSciNetCrossRefMATH Shachnai, H., Tamir, T., Yehezkely, O.: Approximation schemes for packing with item fragmentation. Theory Comput. Syst. 43(1), 81–98 (2008)MathSciNetCrossRefMATH
27.
go back to reference Shachnai, H., Yehezkely, O.: Fast asymptotic FPTAS for packing fragmentable items with costs. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) Proceedings of the 16th international symposium on fundamentals of computation theory, FCT 2007, LNCS, vol. 4639, pp 482–493. Springer, Heidelberg (2007) Shachnai, H., Yehezkely, O.: Fast asymptotic FPTAS for packing fragmentable items with costs. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) Proceedings of the 16th international symposium on fundamentals of computation theory, FCT 2007, LNCS, vol. 4639, pp 482–493. Springer, Heidelberg (2007)
28.
go back to reference Shmonin, G.: Parameterised integer programming, integer cones, and related problems, Ph.D. thesis. Universität Paderborn (2007) Shmonin, G.: Parameterised integer programming, integer cones, and related problems, Ph.D. thesis. Universität Paderborn (2007)
29.
go back to reference Simchi-Levi, D.: New worst-case results for the bin-packing problem. Nav. Res. Logist. 41(4), 579–585 (1994) Simchi-Levi, D.: New worst-case results for the bin-packing problem. Nav. Res. Logist. 41(4), 579–585 (1994)
Metadata
Title
An Improved Approximation Scheme for Variable-Sized Bin Packing
Authors
Klaus Jansen
Stefan Kraft
Publication date
01-08-2016
Publisher
Springer US
Published in
Theory of Computing Systems / Issue 2/2016
Print ISSN: 1432-4350
Electronic ISSN: 1433-0490
DOI
https://doi.org/10.1007/s00224-015-9644-2

Other articles of this Issue 2/2016

Theory of Computing Systems 2/2016 Go to the issue

EditorialNotes

Preface

Premium Partner