Skip to main content
Top
Published in: Cognitive Computation 3/2020

12-11-2019

An Improved Deep Polynomial Network Algorithm for Transcranial Sonography–Based Diagnosis of Parkinson’s Disease

Authors: Lu Shen, Jun Shi, Yun Dong, Shihui Ying, Yaxin Peng, Lu Chen, Qi Zhang, Hedi An, Yingchun Zhang

Published in: Cognitive Computation | Issue 3/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Transcranial sonography (TCS) is a valid neuroimaging tool for the diagnosis of Parkinson’s disease (PD). The TCS-based computer-aided diagnosis (CAD) has attracted increasing attention in recent years, in which feature representation and pattern classification are two critical issues. Deep polynomial network (DPN) is a newly proposed deep learning algorithm that has shown its advantage in learning effective feature representation for samples with a small size. In this work, an improved DPN algorithm with enhanced performance on both feature representation and classification is proposed. First, the empirical kernel mapping (EKM) algorithm is embedded into DPN (EKM-DPN) to improve its feature representation. Second, the network pruning strategy is utilized in the EKM-DPN (named P-EKM-DPN). It not only produces robust feature representation, but also addresses the overfitting issues for the subsequent classifiers to some extent. Lastly, the generalization ability is further enhanced by applying the Dropout approach to P-EKM-DPN (D-P-EKM-DPN). The proposed D-P-EKM-DPN algorithm has been evaluated on a TCS dataset with 153 samples. The experimental results indicate that D-P-EKM-DPN outperforms all the compared algorithms and achieves the best classification accuracy, sensitivity, and specificity of 86.95 ± 3.15%, 85.77 ± 7.87%, and 87.16 ± 6.50%, respectively. The proposed D-P-EKN-DPN algorithm has a great potential in TCS-based CAD for PD due to its excellent performance.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol. 2013;246:72–83.CrossRef Burke RE, O’Malley K. Axon degeneration in Parkinson’s disease. Exp Neurol. 2013;246:72–83.CrossRef
2.
go back to reference Weingarten CP, Sundman MH, Hickey P, Chen NKI. Neuroimaging of Parkinson’s disease: expanding views. Neurosci Biobehav Rev. 2015;59:16–52.CrossRef Weingarten CP, Sundman MH, Hickey P, Chen NKI. Neuroimaging of Parkinson’s disease: expanding views. Neurosci Biobehav Rev. 2015;59:16–52.CrossRef
3.
go back to reference Frosini D, Cosottini M, Volterrani D, Ceravolo R. Neuroimaging in Parkinson’s disease: focus on substantia nigra and nigro-striatal projection. Curr Opin Neurol. 2017;30:416–26.CrossRef Frosini D, Cosottini M, Volterrani D, Ceravolo R. Neuroimaging in Parkinson’s disease: focus on substantia nigra and nigro-striatal projection. Curr Opin Neurol. 2017;30:416–26.CrossRef
4.
go back to reference Long D, Wang J, Xuan M, Gu Q, Xu X, Kong D, et al. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS One. 2012;7:e47714.CrossRef Long D, Wang J, Xuan M, Gu Q, Xu X, Kong D, et al. Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PLoS One. 2012;7:e47714.CrossRef
5.
go back to reference Oliveira FPM, Castelo-Branco M. Computer-aided diagnosis of Parkinson’s disease based on [123I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines. J Neural Eng. 2015;12(2):026008.CrossRef Oliveira FPM, Castelo-Branco M. Computer-aided diagnosis of Parkinson’s disease based on [123I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines. J Neural Eng. 2015;12(2):026008.CrossRef
6.
go back to reference Adeli E, Shi F, An L, Wee CY, Wu G, Wang T, et al. Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. Neuroimage. 2016;141:206–19.CrossRef Adeli E, Shi F, An L, Wee CY, Wu G, Wang T, et al. Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. Neuroimage. 2016;141:206–19.CrossRef
7.
go back to reference Adeli E, Wu G, Saghafi B, An L, Shi F, Shen D. Kernel-based joint feature selection and max-margin classification for early diagnosis of Parkinson’s disease. Sci Rep. 2017;7:41069. Adeli E, Wu G, Saghafi B, An L, Shi F, Shen D. Kernel-based joint feature selection and max-margin classification for early diagnosis of Parkinson’s disease. Sci Rep. 2017;7:41069.
8.
go back to reference Lei H, Huang Z, Zhang J, Yang Z, Tan EL, Zhou F, et al. Joint detection and clinical score prediction in Parkinson’s disease via multi-modal sparse learning. Expert Syst Appl. 2017;80:284–96.CrossRef Lei H, Huang Z, Zhang J, Yang Z, Tan EL, Zhou F, et al. Joint detection and clinical score prediction in Parkinson’s disease via multi-modal sparse learning. Expert Syst Appl. 2017;80:284–96.CrossRef
9.
go back to reference Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, et al. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neurosci Lett. 2017;651:88–94.CrossRef Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, et al. A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neurosci Lett. 2017;651:88–94.CrossRef
10.
go back to reference Garraux G, Phillips C, Schrouff J, Kreisler A, Lemaire C, Degueldre C, et al. Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes. NeuroImage Clin. 2013;2:883–93.CrossRef Garraux G, Phillips C, Schrouff J, Kreisler A, Lemaire C, Degueldre C, et al. Multiclass classification of FDG PET scans for the distinction between Parkinson’s disease and atypical parkinsonian syndromes. NeuroImage Clin. 2013;2:883–93.CrossRef
11.
go back to reference Prashanth R, Dutta RS, Mandal PK, Ghosh S. High-accuracy classification of Parkinson’s disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging. IEEE J Biol Health Inform. 2017;21:794–802.CrossRef Prashanth R, Dutta RS, Mandal PK, Ghosh S. High-accuracy classification of Parkinson’s disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging. IEEE J Biol Health Inform. 2017;21:794–802.CrossRef
12.
go back to reference Gong B, Shi J, Ying S, Dai Y, Zhang Q, Dong Y, et al. Neuroimaging-based diagnosis of Parkinson’s disease with deep neural mapping large margin distribution machine. Neurocomputing. 2018;320:141–9.CrossRef Gong B, Shi J, Ying S, Dai Y, Zhang Q, Dong Y, et al. Neuroimaging-based diagnosis of Parkinson’s disease with deep neural mapping large margin distribution machine. Neurocomputing. 2018;320:141–9.CrossRef
13.
go back to reference Berg D. Ultrasound in the (premotor) diagnosis of Parkinson’s disease. Park Relat Disord. 2007;13:13.CrossRef Berg D. Ultrasound in the (premotor) diagnosis of Parkinson’s disease. Park Relat Disord. 2007;13:13.CrossRef
14.
go back to reference Chen L, Hagenah J, Mertins A. Feature analysis for Parkinson’s disease detection based on transcranial sonography image. International conference on medical image computing & computer-assisted intervention; 2012. p. 272–279. Chen L, Hagenah J, Mertins A. Feature analysis for Parkinson’s disease detection based on transcranial sonography image. International conference on medical image computing & computer-assisted intervention; 2012. p. 272–279.
15.
go back to reference Pauly O, Ahmadi SA, Plate A, Boetzel K, Navab N. Detection of substantia nigra echogenicities in 3D transcranial ultrasound for early diagnosis of Parkinson disease. International conference on medical image computing & computer-assisted intervention; 2012. p. 443–450. Pauly O, Ahmadi SA, Plate A, Boetzel K, Navab N. Detection of substantia nigra echogenicities in 3D transcranial ultrasound for early diagnosis of Parkinson disease. International conference on medical image computing & computer-assisted intervention; 2012. p. 443–450.
16.
go back to reference Plate A, Ahmadi SA, Pauly O, Klein T, Navab N, Bötzel K. Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med Biol. 2012;38:2041–50.CrossRef Plate A, Ahmadi SA, Pauly O, Klein T, Navab N, Bötzel K. Three-dimensional sonographic examination of the midbrain for computer-aided diagnosis of movement disorders. Ultrasound Med Biol. 2012;38:2041–50.CrossRef
17.
go back to reference Sakalauskas A, Laučkaitė K, Lukoševičius A, Rastenytė D. Computer-aided segmentation of the mid-brain in trans-cranial ultrasound images. Ultrasound Med Biol. 2016;42:322–32.CrossRef Sakalauskas A, Laučkaitė K, Lukoševičius A, Rastenytė D. Computer-aided segmentation of the mid-brain in trans-cranial ultrasound images. Ultrasound Med Biol. 2016;42:322–32.CrossRef
18.
go back to reference Sakalauskas A, Špečkauskienė V, Laučkaitė K, Jurkonis R, Rastenytė D, Lukoševičius A. Transcranial ultrasonographic image analysis system for decision support in Parkinson disease. J Ultrasound Med. 2018;37(7):1753–61. Sakalauskas A, Špečkauskienė V, Laučkaitė K, Jurkonis R, Rastenytė D, Lukoševičius A. Transcranial ultrasonographic image analysis system for decision support in Parkinson disease. J Ultrasound Med. 2018;37(7):1753–61.
19.
go back to reference Shi J, Xue Z, Dai Y, Peng B, Dong Y, Zhang Q, Zhang Y. Cascaded multi-column RVFL+ classifier for single-modal neuroimaging-based diagnosis of Parkinson’s disease. IEEE Trans Biomed Eng 2019;66(8):2362–71. Shi J, Xue Z, Dai Y, Peng B, Dong Y, Zhang Q, Zhang Y. Cascaded multi-column RVFL+ classifier for single-modal neuroimaging-based diagnosis of Parkinson’s disease. IEEE Trans Biomed Eng 2019;66(8):2362–71.
20.
go back to reference Shi J, Jiang QK, Zhang Q, Huang QH, Li XL. Sparse kernel entropy component analysis for dimensionality reduction of biomedical data. Neurocomputing. 2015;168:930–40.CrossRef Shi J, Jiang QK, Zhang Q, Huang QH, Li XL. Sparse kernel entropy component analysis for dimensionality reduction of biomedical data. Neurocomputing. 2015;168:930–40.CrossRef
21.
go back to reference Shi J, Wu J, Li Y, Zhang Q, Ying S. Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier. IEEE J Biol Health Inform. 2017;21(5):1327–37.CrossRef Shi J, Wu J, Li Y, Zhang Q, Ying S. Histopathological image classification with color pattern random binary hashing based PCANet and matrix-form classifier. IEEE J Biol Health Inform. 2017;21(5):1327–37.CrossRef
22.
go back to reference Wang J, Wang Q, Peng J, Nie D, Zhao F, Kim M, et al. Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study. Hum Brain Mapp. 2017;38(6):3081–97.CrossRef Wang J, Wang Q, Peng J, Nie D, Zhao F, Kim M, et al. Multi-task diagnosis for autism spectrum disorders using multi-modality features: a multi-center study. Hum Brain Mapp. 2017;38(6):3081–97.CrossRef
23.
go back to reference Wang J, Wang Q, Zhang H, Chen J, Wang S, Shen D. Sparse multiview task-centralized ensemble learning for ASD diagnosis based on age- and sex-related functional connectivity patterns. IEEE Trans Cybern. 2019;49(8):3141–54.CrossRef Wang J, Wang Q, Zhang H, Chen J, Wang S, Shen D. Sparse multiview task-centralized ensemble learning for ASD diagnosis based on age- and sex-related functional connectivity patterns. IEEE Trans Cybern. 2019;49(8):3141–54.CrossRef
24.
go back to reference Cox DD, Dean T. Neural networks and neuroscience-inspired computer vision. Curr Biol. 2014;24(18):R921–9.CrossRef Cox DD, Dean T. Neural networks and neuroscience-inspired computer vision. Curr Biol. 2014;24(18):R921–9.CrossRef
25.
go back to reference Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.CrossRef Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117.CrossRef
26.
go back to reference Shen D, Wu G, Suk H. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2016;19:221–48.CrossRef Shen D, Wu G, Suk H. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2016;19:221–48.CrossRef
27.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.CrossRef
28.
go back to reference Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):2352–449.CrossRef Rawat W, Wang Z. Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 2017;29(9):2352–449.CrossRef
29.
go back to reference Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, et al. HCP: a flexible CNN framework for multi-label image classification. IEEE Trans Pattern Anal Mach Intell. 2016;38(9):1901–7.CrossRef Wei Y, Xia W, Lin M, Huang J, Ni B, Dong J, et al. HCP: a flexible CNN framework for multi-label image classification. IEEE Trans Pattern Anal Mach Intell. 2016;38(9):1901–7.CrossRef
30.
go back to reference Wang Q, Liu S, Chanussot J, et al. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans Geosci Remote Sens. 2019;57(2):1155–67.CrossRef Wang Q, Liu S, Chanussot J, et al. Scene classification with recurrent attention of VHR remote sensing images. IEEE Trans Geosci Remote Sens. 2019;57(2):1155–67.CrossRef
31.
go back to reference Shi J, Zhou S, Liu X, Zhang Q, Lu M, Wang T. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing. 2016;194:87–94.CrossRef Shi J, Zhou S, Liu X, Zhang Q, Lu M, Wang T. Stacked deep polynomial network based representation learning for tumor classification with small ultrasound image dataset. Neurocomputing. 2016;194:87–94.CrossRef
32.
go back to reference Shi J, Zheng X, Ying S, Zhang Q, Li Y. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biol Health Inform. 2018;22(1):173–83.CrossRef Shi J, Zheng X, Ying S, Zhang Q, Li Y. Multimodal neuroimaging feature learning with multimodal stacked deep polynomial networks for diagnosis of Alzheimer’s disease. IEEE J Biol Health Inform. 2018;22(1):173–83.CrossRef
33.
go back to reference Li C, Deng C, Zhou S, et al. Conditional random mapping for effective ELM feature representation. Cogn Comput. 2018;10(5):827–47.CrossRef Li C, Deng C, Zhou S, et al. Conditional random mapping for effective ELM feature representation. Cogn Comput. 2018;10(5):827–47.CrossRef
34.
go back to reference Wang T, Cao J, Lai X, Chen B. Deep weighted extreme learning machine. Cogn Comput. 2018;10:890–907.CrossRef Wang T, Cao J, Lai X, Chen B. Deep weighted extreme learning machine. Cogn Comput. 2018;10:890–907.CrossRef
35.
go back to reference Tang J, Deng C, Huang GB. Extreme learning machine for multilayer perceptron [J]. IEEE Trans Neural Netw Learn Syst. 2016;27(4):809–21. Tang J, Deng C, Huang GB. Extreme learning machine for multilayer perceptron [J]. IEEE Trans Neural Netw Learn Syst. 2016;27(4):809–21.
36.
go back to reference Livni R, Shalev-Shwartz S, Shamir O. 2013. An algorithm for training polynomial networks. arXiv:1304.7045. Livni R, Shalev-Shwartz S, Shamir O. 2013. An algorithm for training polynomial networks. arXiv:1304.7045.
37.
go back to reference Lei H, Wen Y, Elazab A, Tan EL, Zhao Y, Lei B. Protein-protein interactions prediction via multimodal deep polynomial network and regularized extreme learning machine. IEEE J Biol Health Inform. 2019;23(3):1290–303. Lei H, Wen Y, Elazab A, Tan EL, Zhao Y, Lei B. Protein-protein interactions prediction via multimodal deep polynomial network and regularized extreme learning machine. IEEE J Biol Health Inform. 2019;23(3):1290–303.
38.
go back to reference Xiong H, Swamy MNS, Ahmad MO. Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw. 2005;16(2):460–74.CrossRef Xiong H, Swamy MNS, Ahmad MO. Optimizing the kernel in the empirical feature space. IEEE Trans Neural Netw. 2005;16(2):460–74.CrossRef
39.
go back to reference Fan Q, Wang Z, Zha HY, Gao DQ. MREKLM: a fast multiple empirical kernel learning machine. Pattern Recogn. 2017;61:197–209.CrossRef Fan Q, Wang Z, Zha HY, Gao DQ. MREKLM: a fast multiple empirical kernel learning machine. Pattern Recogn. 2017;61:197–209.CrossRef
40.
go back to reference Wang Z, Fan Q, Jie W, Gao D. An efficient and effective multiple empirical kernel learning based on random projection. Neural Process Lett. 2015;42:715–44.CrossRef Wang Z, Fan Q, Jie W, Gao D. An efficient and effective multiple empirical kernel learning based on random projection. Neural Process Lett. 2015;42:715–44.CrossRef
41.
go back to reference Vong C, Chen C, Wong P. Empirical kernel map-based multilayer extreme learning machines for representation. Neurocomputing. 2018;310:265–76.CrossRef Vong C, Chen C, Wong P. Empirical kernel map-based multilayer extreme learning machines for representation. Neurocomputing. 2018;310:265–76.CrossRef
42.
go back to reference Wang Z, Chen S, Xue H, Pan Z. A novel regularization learning for single-view patterns: multi-view discriminative regularization. Neural Process Lett. 2010;31:159–75.CrossRef Wang Z, Chen S, Xue H, Pan Z. A novel regularization learning for single-view patterns: multi-view discriminative regularization. Neural Process Lett. 2010;31:159–75.CrossRef
43.
go back to reference Augasta MG, Kathirvalavakumar T. Pruning algorithms of neural networks — a comparative study. Centr Eur J Comp Sci. 2013;3:105. Augasta MG, Kathirvalavakumar T. Pruning algorithms of neural networks — a comparative study. Centr Eur J Comp Sci. 2013;3:105.
44.
go back to reference Mona A, Othman S, Arturo MM, Bajic VB. DANNP: an efficient artificial neural network pruning tool. PeerJ Comput Sci. 2017;3:e137.CrossRef Mona A, Othman S, Arturo MM, Bajic VB. DANNP: an efficient artificial neural network pruning tool. PeerJ Comput Sci. 2017;3:e137.CrossRef
45.
go back to reference Nitish S, Geoffrey H, Alex K, Ilya S, Ruslan S. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58. Nitish S, Geoffrey H, Alex K, Ilya S, Ruslan S. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15:1929–58.
46.
go back to reference Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput. 2017;9(4):581–95.CrossRef Guo T, Zhang L, Tan X. Neuron pruning-based discriminative extreme learning machine for pattern classification. Cogn Comput. 2017;9(4):581–95.CrossRef
47.
go back to reference Iosifidis A, Tefas A, Pitas I. DropELM: fast neural network regularization with dropout and dropconnect. Neurocomputing. 2015;162:57–66.CrossRef Iosifidis A, Tefas A, Pitas I. DropELM: fast neural network regularization with dropout and dropconnect. Neurocomputing. 2015;162:57–66.CrossRef
48.
go back to reference Zhang Q, Xiao Y, Suo J, Shi J, Yu J, Guo Y, et al. Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography. Ultrasound Med Biol. 2017;43(5):1058–69.CrossRef Zhang Q, Xiao Y, Suo J, Shi J, Yu J, Guo Y, et al. Sonoelastomics for breast tumor classification: a radiomics approach with clustering-based feature selection on sonoelastography. Ultrasound Med Biol. 2017;43(5):1058–69.CrossRef
49.
go back to reference Alexander B, Evgeny B, Ekaterina K, Svetlana S, Maxim S, Alexander A, et al. 2018. Machine learning pipeline for discovering neuroimaging-based biomarkers in neurology and psychiatry. arXiv:1804.10163. Alexander B, Evgeny B, Ekaterina K, Svetlana S, Maxim S, Alexander A, et al. 2018. Machine learning pipeline for discovering neuroimaging-based biomarkers in neurology and psychiatry. arXiv:1804.10163.
Metadata
Title
An Improved Deep Polynomial Network Algorithm for Transcranial Sonography–Based Diagnosis of Parkinson’s Disease
Authors
Lu Shen
Jun Shi
Yun Dong
Shihui Ying
Yaxin Peng
Lu Chen
Qi Zhang
Hedi An
Yingchun Zhang
Publication date
12-11-2019
Publisher
Springer US
Published in
Cognitive Computation / Issue 3/2020
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-019-09691-7

Other articles of this Issue 3/2020

Cognitive Computation 3/2020 Go to the issue

Premium Partner