Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

08-05-2018 | S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing | Issue 5/2019

Neural Computing and Applications 5/2019

An Improved dynamic self-adaption cuckoo search algorithm based on collaboration between subpopulations

Journal:
Neural Computing and Applications > Issue 5/2019
Authors:
Hui-sheng Ma, Shu-xia Li, Shu-fang Li, Zheng-nan Lv, Jie-sheng Wang

Abstract

In order to improve convergence rate and optimization precision of the cuckoo search (CS) algorithm, an improved dynamic self-adaption cuckoo search algorithm based on collaboration between subpopulations (SC-DSCS, where ‘SC’ represents ‘Subpopulation Collaboration,’ ‘DS’ represents ‘dynamic self-adaption’) is proposed. In SC-DSCS, the population of cuckoos is divided into two subgroups. The nest locations of birds belonging to the first subgroup are updated according to the traditional CS algorithm so as to retain the global search ability, and the second subgroup produces the corresponding nest locations for next generation by flying from the better nest locations to enhance the local search ability of the CS algorithm. Through collaboration between two subgroups, the problem that the local search ability of CS algorithm is not strong can be effectively solved. In order to reduce the probability of the algorithm falling into local optimum and improve the optimization precision, the SC-DSCS algorithm creates a new bird’s nest under the comprehensive assessment of the first three best bird’s nests. The new nest is added to the optimal bird’s nest sequence. In order to improve the adaptability of the SC-DSCS, adaptive step length control is adopted in the bird’s nest position updating process. Finally, nine benchmark functions are adopted to carry out the simulation experiments. The proposed algorithm is compared with particle swarm optimization algorithm, artificial colony algorithm and differential evolution algorithm. Simulation results show that the proposed SC-DSCS algorithm has better convergence speed and optimization precision.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 5/2019

Neural Computing and Applications 5/2019 Go to the issue

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Deployment of smart home management system at the edge: mechanisms and protocols

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

Deep learning model for home automation and energy reduction in a smart home environment platform

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

EoT-driven hybrid ambient assisted living framework with naïve Bayes–firefly algorithm

S.I. : Emerging Intelligent Algorithms for Edge-of-Things Computing

A novel method for solving the fully neutrosophic linear programming problems

Premium Partner

    Image Credits