Skip to main content
Top
Published in: Soft Computing 19/2020

05-03-2020 | Methodologies and Application

An intelligent computer-aided approach for target protein prediction in infectious diseases

Authors: D. Narmadha, A. Pravin

Published in: Soft Computing | Issue 19/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Essential proteins are the most important constituents for all kinds of organism. The research on predicting essential target proteins contributes significantly to drug development, disease diagnosis, and treatment. Numerous computational- and experimental-based approaches have been used in the recent past for essential protein prediction. However, it is highly challenging to bring remarkable improvement in the accuracy of the essential target proteins. In this method, we introduce an intelligent computational technique known as graph colouring-deep neural network which automatically extracts the target proteins by combining a graph-theoretic approach called graph colouring and neural network. In this approach, the protein–protein interaction network (PPI) of homosapiens are extracted from string DB (data base) and then applied to the graph colouring algorithm. Initially, each protein in the network is assigned a colour by checking the connectivity with the neighbourhood proteins. Secondly, the proteins with primary and secondary colours are extracted from the PPI. Finally, a deep neural network-based approach is used to automatically extract the essential target proteins depending on the physicochemical features of the proteins. To assess the performance of the proposed model, the experiment has been carried out in four different diseases such as cancer, diabetes, asthma and human papilloma virus viral infection. The proposed approach shows a remarkable performance than the traditional approaches in views of various metrics such as accuracy, precision, recall, and F-measure.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arighi CN, Roberts PM, Agarwal S, Bhattacharya S, Cesareni G, Chatr-aryamontri A, Wu CH (2011) BioCreative III interactive task: an overview. BMC Bioinform 12(Suppl 8):S4CrossRef Arighi CN, Roberts PM, Agarwal S, Bhattacharya S, Cesareni G, Chatr-aryamontri A, Wu CH (2011) BioCreative III interactive task: an overview. BMC Bioinform 12(Suppl 8):S4CrossRef
go back to reference Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2CrossRef Bader GD, Hogue CW (2003) An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform 4:2CrossRef
go back to reference Ban HJ, Heo JY, Oh KS, Park KJ (2010) Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genet 11(1):26CrossRef Ban HJ, Heo JY, Oh KS, Park KJ (2010) Identification of type 2 diabetes-associated combination of SNPs using support vector machine. BMC Genet 11(1):26CrossRef
go back to reference Chen XW, Liu M (2005) Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21(24):4394–4400CrossRef Chen XW, Liu M (2005) Prediction of protein–protein interactions using random decision forest framework. Bioinformatics 21(24):4394–4400CrossRef
go back to reference Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S (1998) SGD: Saccharomyces genome database. Nucleic Acids Res 26(1):73–79CrossRef Cherry JM, Adler C, Ball C, Chervitz SA, Dwight SS, Hester ET, Jia Y, Juvik G, Roe T, Schroeder M, Weng S (1998) SGD: Saccharomyces genome database. Nucleic Acids Res 26(1):73–79CrossRef
go back to reference Dalton HM, Curran SP (2018) Hypodermal responses to protein synthesis inhibition induce systemic developmental arrest and AMPK-dependent survival in Caenorhabditis elegans. PLoS Genet 14(7):e1007520CrossRef Dalton HM, Curran SP (2018) Hypodermal responses to protein synthesis inhibition induce systemic developmental arrest and AMPK-dependent survival in Caenorhabditis elegans. PLoS Genet 14(7):e1007520CrossRef
go back to reference Feiten MC, Di Luccio M, Santos KF, de Oliveira D, Oliveira JV (2017) X-ray crystallography as a tool to determine three-dimensional structures of commercial enzymes subjected to treatment in pressurized fluids. Appl Biochem Biotechnol 182(2):429–451CrossRef Feiten MC, Di Luccio M, Santos KF, de Oliveira D, Oliveira JV (2017) X-ray crystallography as a tool to determine three-dimensional structures of commercial enzymes subjected to treatment in pressurized fluids. Appl Biochem Biotechnol 182(2):429–451CrossRef
go back to reference Hua S, Sun Z (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308(2):397–407CrossRef Hua S, Sun Z (2001) A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J Mol Biol 308(2):397–407CrossRef
go back to reference Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41CrossRef Jeong H, Mason SP, Barabási AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411(6833):41CrossRef
go back to reference King RD, Sternberg MJ (1990) Machine learning approach for the prediction of protein secondary structure. J Mol Biol 216(2):441–457CrossRef King RD, Sternberg MJ (1990) Machine learning approach for the prediction of protein secondary structure. J Mol Biol 216(2):441–457CrossRef
go back to reference Koschützki D, Schreiber F (2004) Comparison of centralities for biological networks. In: German conference on bioinformatics, pp 199–206 Koschützki D, Schreiber F (2004) Comparison of centralities for biological networks. In: German conference on bioinformatics, pp 199–206
go back to reference Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17CrossRef Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI (2015) Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 13:8–17CrossRef
go back to reference Li ZC, Lai YH, Chen LL, Xie Y, Dai Z (1844) Zou XY (2014) Identifying and prioritizing disease-related genes based on the network topological features. Biochim Biophys Acta (BBA)-Proteins Proteomics 12:2214–2221 Li ZC, Lai YH, Chen LL, Xie Y, Dai Z (1844) Zou XY (2014) Identifying and prioritizing disease-related genes based on the network topological features. Biochim Biophys Acta (BBA)-Proteins Proteomics 12:2214–2221
go back to reference Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor Protocols 2015(5):pdb-top083345CrossRef Mehla J, Caufield JH, Uetz P (2015) The yeast two-hybrid system: a tool for mapping protein–protein interactions. Cold Spring Harbor Protocols 2015(5):pdb-top083345CrossRef
go back to reference Muggleton S, King RD, Stenberg MJ (1992) Protein secondary structure prediction using logic-based machine learning. Protein Eng Des Sel 5(7):647–657CrossRef Muggleton S, King RD, Stenberg MJ (1992) Protein secondary structure prediction using logic-based machine learning. Protein Eng Des Sel 5(7):647–657CrossRef
go back to reference Narmadha D, Pravin A (2019) An effective statistical integrative algorithm (Aeiapp) for protein prediction. Int J Innov Technol Explor Eng 8(11):132–137CrossRef Narmadha D, Pravin A (2019) An effective statistical integrative algorithm (Aeiapp) for protein prediction. Int J Innov Technol Explor Eng 8(11):132–137CrossRef
go back to reference Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A (2004) The MIPS mammalian protein–protein interaction database. Bioinformatics 21:832–834CrossRef Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stümpflen V, Mewes HW, Ruepp A (2004) The MIPS mammalian protein–protein interaction database. Bioinformatics 21:832–834CrossRef
go back to reference Qin G, Gao L (2010) Spectral clustering for detecting protein complexes in protein–protein interaction (PPI) networks. Math Comput Model 52(11–12):2066–2074MathSciNetCrossRef Qin G, Gao L (2010) Spectral clustering for detecting protein complexes in protein–protein interaction (PPI) networks. Math Comput Model 52(11–12):2066–2074MathSciNetCrossRef
go back to reference Ramadan E, Alinsaif S, Hassan MR (2016) Network topology measures for identifying disease-gene association in breast cancer. BMC Bioinform 17(7):274CrossRef Ramadan E, Alinsaif S, Hassan MR (2016) Network topology measures for identifying disease-gene association in breast cancer. BMC Bioinform 17(7):274CrossRef
go back to reference Ren J, Wang J, Li M, Wu F (2015) Discovering essential proteins based on PPI network and protein complex. Int J Data Min Bioinform 12(1):24–43CrossRef Ren J, Wang J, Li M, Wu F (2015) Discovering essential proteins based on PPI network and protein complex. Int J Data Min Bioinform 12(1):24–43CrossRef
go back to reference Ruhnau B (2000) Eigenvector-centrality—anode-centrality? Soc Netw 22(4):357–365CrossRef Ruhnau B (2000) Eigenvector-centrality—anode-centrality? Soc Netw 22(4):357–365CrossRef
go back to reference Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41:237–280CrossRef Sclafani RA, Holzen TM (2007) Cell cycle regulation of DNA replication. Annu Rev Genet 41:237–280CrossRef
go back to reference Tahir M, Hayat M (2017) Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artif Intell Med 78:61–71CrossRef Tahir M, Hayat M (2017) Machine learning based identification of protein–protein interactions using derived features of physiochemical properties and evolutionary profiles. Artif Intell Med 78:61–71CrossRef
go back to reference Tang X, Wang J, Zhong J, Pan Y (2014) Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 11(2):407–418CrossRef Tang X, Wang J, Zhong J, Pan Y (2014) Predicting essential proteins based on weighted degree centrality. IEEE/ACM Trans Comput Biol Bioinform (TCBB) 11(2):407–418CrossRef
go back to reference Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669CrossRef Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168(4):657–669CrossRef
go back to reference Vlasblom J, Wodak SJ (2009) Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform 10(1):99CrossRef Vlasblom J, Wodak SJ (2009) Markov clustering versus affinity propagation for the partitioning of protein interaction graphs. BMC Bioinform 10(1):99CrossRef
go back to reference Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291CrossRef Xenarios I, Rice DW, Salwinski L, Baron MK, Marcotte EM, Eisenberg D (2000) DIP: the database of interacting proteins. Nucleic Acids Res 28:289–291CrossRef
go back to reference Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22:2800–2805CrossRef Xu J, Li Y (2006) Discovering disease-genes by topological features in human protein–protein interaction network. Bioinformatics 22:2800–2805CrossRef
go back to reference Zhang L, Li X, Tai J, Li W, Chen L (2012) Predicting candidate genes based on combined network topological features: a case study in coronary artery disease. PLoS ONE 7(6):e39542CrossRef Zhang L, Li X, Tai J, Li W, Chen L (2012) Predicting candidate genes based on combined network topological features: a case study in coronary artery disease. PLoS ONE 7(6):e39542CrossRef
go back to reference Zhao B, Wang J, Li X, Wu FX (2016) Essential protein discovery based on a combination of modularity and conservatism. Methods 110:54–63CrossRef Zhao B, Wang J, Li X, Wu FX (2016) Essential protein discovery based on a combination of modularity and conservatism. Methods 110:54–63CrossRef
go back to reference Zhong J, Wang J, Peng W, Zhang Z, Pan Y (2013) Prediction of essential proteins based on gene expression programming. BMC Genomics 14(4):S7CrossRef Zhong J, Wang J, Peng W, Zhang Z, Pan Y (2013) Prediction of essential proteins based on gene expression programming. BMC Genomics 14(4):S7CrossRef
Metadata
Title
An intelligent computer-aided approach for target protein prediction in infectious diseases
Authors
D. Narmadha
A. Pravin
Publication date
05-03-2020
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 19/2020
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-020-04815-w

Other articles of this Issue 19/2020

Soft Computing 19/2020 Go to the issue

Premium Partner