Skip to main content
Top
Published in: Arabian Journal for Science and Engineering 3/2024

25-05-2023 | Research Article-Computer Engineering and Computer Science

An Intelligent IoT-Cloud-Based Air Pollution Forecasting Model Using Univariate Time-Series Analysis

Authors: Manzoor Ansari, Mansaf Alam

Published in: Arabian Journal for Science and Engineering | Issue 3/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Air pollution is a significant environmental issue affecting public health and ecosystems worldwide, resulting from various sources such as industrial activities, vehicle emissions, and fossil fuel burning. Air pollution contributes to climate change and can cause several health problems, such as respiratory illnesses, cardiovascular disease, and cancer. A potential solution to this problem has been proposed by using different artificial intelligence (AI) and time-series models. These models are implemented in the cloud environment to forecast the Air Quality Index (AQI) utilizing Internet of things (IoT) devices. The recent influx of IoT-enabled time-series air pollution data poses challenges for traditional models. Various approaches have been explored to forecast AQI in the cloud environment using IoT devices. The primary objective of this study is to assess the efficacy of an IoT-Cloud-based model for forecasting the AQI under different meteorological conditions. To achieve this, we proposed a novel BO-HyTS approach that combines seasonal autoregressive integrated moving average (SARIMA) and long short-term memory (LSTM) and fine-tuned it by using Bayesian optimization to predict air pollution levels. The proposed BO-HyTS model can capture both linear and nonlinear characteristics of the time-series data, thus augmenting the accuracy of the forecasting process. Additionally, several AQI forecasting models, including classical time-series, machine learning, and deep learning, are employed to forecast air quality from time-series data. Five statistical evaluation metrics are incorporated to evaluate the effectiveness of models. While comparing the various algorithms among themselves becomes difficult, a non-parametric statistical significance test (Friedman test) is applied to assess the performance of the different machine learning, time-series, and deep learning models. The findings reveal that the proposed BO-HyTS model produced significantly better results than their competitor's, providing the most accurate and efficient forecasting model, with an MSE of 632.200, RMSE of 25.14, Med AE of 19.11, Max Error of 51.52, and MAE of 20.49. The results of this study provide insights into the future patterns of AQI in various Indian states and set a standard for these states as governments develop their healthcare policies accordingly. The proposed BO-HyTS model has the potential to inform policy decisions and enable governments and organizations to protect better and manage the environment beforehand.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
7.
go back to reference Franchini, M.; Mannucci, P.: Thrombogenicity and cardiovascular effects of ambient air pollution". Blood, J Am Soc Hematol 118(9), 2405–2412 (2011) Franchini, M.; Mannucci, P.: Thrombogenicity and cardiovascular effects of ambient air pollution". Blood, J Am Soc Hematol 118(9), 2405–2412 (2011)
10.
go back to reference Cohen, A.J., et al.: Special report: a planetary health perspective on COVID-19: a call for papers. Lancet Planetary Health 4(6), e237–e238 (2020) Cohen, A.J., et al.: Special report: a planetary health perspective on COVID-19: a call for papers. Lancet Planetary Health 4(6), e237–e238 (2020)
11.
go back to reference Xie, J., et al.: Investigating the relationship between air pollution and stroke incidence in China: a national time-series study. Environ. Pollut. 269, 116147 (2021) Xie, J., et al.: Investigating the relationship between air pollution and stroke incidence in China: a national time-series study. Environ. Pollut. 269, 116147 (2021)
12.
go back to reference Chen, H., et al.: Spatial analysis of the association between ambient air pollution and birth defects in China. Environ. Pollut. 266, 115392 (2020) Chen, H., et al.: Spatial analysis of the association between ambient air pollution and birth defects in China. Environ. Pollut. 266, 115392 (2020)
13.
go back to reference Yu, H., et al.: Short-term effects of ambient air pollution on chronic obstructive pulmonary disease admissions in Beijing, China. Sci. Total Environ. 612, 953–959 (2018) Yu, H., et al.: Short-term effects of ambient air pollution on chronic obstructive pulmonary disease admissions in Beijing, China. Sci. Total Environ. 612, 953–959 (2018)
14.
go back to reference Brunekreef, B., et al.: Air pollution and new-onset bronchial hyperresponsiveness: a longitudinal cohort study. Lancet Planetary Health 3(9), e389–e397 (2019) Brunekreef, B., et al.: Air pollution and new-onset bronchial hyperresponsiveness: a longitudinal cohort study. Lancet Planetary Health 3(9), e389–e397 (2019)
15.
go back to reference Lim, S.S., et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380(9859), 2224–2260 (2012)CrossRef Lim, S.S., et al.: A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380(9859), 2224–2260 (2012)CrossRef
17.
go back to reference Martín-Baos, J.Á.; Rodriguez-Benitez, L.; García-Ródenas, R.; Liu, J.: IoT based monitoring of air quality and traffic using regression analysis. Appl. Soft Comput. 115, 108282 (2022)CrossRef Martín-Baos, J.Á.; Rodriguez-Benitez, L.; García-Ródenas, R.; Liu, J.: IoT based monitoring of air quality and traffic using regression analysis. Appl. Soft Comput. 115, 108282 (2022)CrossRef
18.
go back to reference Sigamani, S.; Venkatesan, R.: Air quality index prediction with influence of meteorological parameters using machine learning model for IoT application. Arab. J. Geosci. 15(4), 1–12 (2022)CrossRef Sigamani, S.; Venkatesan, R.: Air quality index prediction with influence of meteorological parameters using machine learning model for IoT application. Arab. J. Geosci. 15(4), 1–12 (2022)CrossRef
19.
go back to reference Purkayastha, K.D.; Mishra, R.K.; Shil, A.; Pradhan, S.N.: IoT based design of air quality monitoring system web server for android platform. Wireless Pers. Commun. 118(4), 2921–2940 (2021)CrossRef Purkayastha, K.D.; Mishra, R.K.; Shil, A.; Pradhan, S.N.: IoT based design of air quality monitoring system web server for android platform. Wireless Pers. Commun. 118(4), 2921–2940 (2021)CrossRef
20.
go back to reference Barthwal, A.; Acharya, D.: An IoT based sensing system for modeling and forecasting urban air quality. Wireless Pers. Commun. 116(4), 3503–3526 (2021)CrossRef Barthwal, A.; Acharya, D.: An IoT based sensing system for modeling and forecasting urban air quality. Wireless Pers. Commun. 116(4), 3503–3526 (2021)CrossRef
21.
go back to reference Senthilkumar, R.; Venkatakrishnan, P.; Balaji, N.: Intelligent based novel embedded system based IoT enabled air pollution monitoring system. Microprocess. Microsyst. 77, 103172 (2020)CrossRef Senthilkumar, R.; Venkatakrishnan, P.; Balaji, N.: Intelligent based novel embedded system based IoT enabled air pollution monitoring system. Microprocess. Microsyst. 77, 103172 (2020)CrossRef
22.
go back to reference Mahbub, M.; Hossain, M.M.; Gazi, M.S.A.: Cloud-Enabled IoT-based embedded system and software for intelligent indoor lighting, ventilation, early stage fire detection and prevention. Comput. Netw. 184, 107673 (2021)CrossRef Mahbub, M.; Hossain, M.M.; Gazi, M.S.A.: Cloud-Enabled IoT-based embedded system and software for intelligent indoor lighting, ventilation, early stage fire detection and prevention. Comput. Netw. 184, 107673 (2021)CrossRef
23.
go back to reference Rakib, M., Haq, S., Hossain, M. I., & Rahman, T.: IoT Based Air Pollution Monitoring & Prediction System. In 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET) (pp. 184–189). IEEE. (2022) Rakib, M., Haq, S., Hossain, M. I., & Rahman, T.: IoT Based Air Pollution Monitoring & Prediction System. In 2022 International Conference on Innovations in Science, Engineering and Technology (ICISET) (pp. 184–189). IEEE. (2022)
24.
go back to reference Zhang, L.; Lin, J.; Qiu, R.; Hu, X.; Zhang, H.; Chen, Q.; Wang, J.: Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecol. Indicat. 95, 702–710 (2018)CrossRef Zhang, L.; Lin, J.; Qiu, R.; Hu, X.; Zhang, H.; Chen, Q.; Wang, J.: Trend analysis and forecast of PM2.5 in Fuzhou, China using the ARIMA model. Ecol. Indicat. 95, 702–710 (2018)CrossRef
25.
go back to reference Moursi, A.S.; El-Fishawy, N.; Djahel, S.; Shouman, M.A.: An IoT enabled system for enhanced air quality monitoring and prediction on the edge. Complex & Intell. Syst. 7(6), 2923–2947 (2021)CrossRef Moursi, A.S.; El-Fishawy, N.; Djahel, S.; Shouman, M.A.: An IoT enabled system for enhanced air quality monitoring and prediction on the edge. Complex & Intell. Syst. 7(6), 2923–2947 (2021)CrossRef
26.
go back to reference Box, G.; Jenkins, G.; Reinsel, G.; Ljung, G.: Time series analysis: forecasting and control. (2015). Box, G.; Jenkins, G.; Reinsel, G.; Ljung, G.: Time series analysis: forecasting and control. (2015).
27.
go back to reference Wei, W. W.: Time series analysis. In The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2. (2006) Wei, W. W.: Time series analysis. In The Oxford Handbook of Quantitative Methods in Psychology: Vol. 2. (2006)
42.
go back to reference Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Zheng, X.: {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). (2016) Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Zheng, X.: {TensorFlow}: a system for {Large-Scale} machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265–283). (2016)
43.
go back to reference McKinney, W.: pandas: a foundational Python library for data analysis and statistics. Python for High Perform Sci Comput 14(9), 1–9 (2011) McKinney, W.: pandas: a foundational Python library for data analysis and statistics. Python for High Perform Sci Comput 14(9), 1–9 (2011)
44.
go back to reference Oliphant, T.E.: A guide to NumPy (Vol. 1, p. 85). USA: Trelgol Publishing. (2006) Oliphant, T.E.: A guide to NumPy (Vol. 1, p. 85). USA: Trelgol Publishing. (2006)
45.
go back to reference Gulli, A.; Pal, S.: Deep learning with Keras. Packt Publishing Ltd. (2017) Gulli, A.; Pal, S.: Deep learning with Keras. Packt Publishing Ltd. (2017)
46.
go back to reference Bisong, E. (2019). Matplotlib and seaborn. In Building machine learning and deep learning models on google cloud platform (pp. 151–165). Apress, Berkeley, CA. Bisong, E. (2019). Matplotlib and seaborn. In Building machine learning and deep learning models on google cloud platform (pp. 151–165). Apress, Berkeley, CA.
47.
go back to reference McKinney, W.; Perktold, J.; Seabold, S. (2011). Time series analysis in python with statsmodels. Jarrodmillman. Com, 96–102. McKinney, W.; Perktold, J.; Seabold, S. (2011). Time series analysis in python with statsmodels. Jarrodmillman. Com, 96–102.
48.
go back to reference Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E.: Scikit-learn: machine learning in Python. J Mach Learn Res 12, 2825–2830 (2011)MathSciNet Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E.: Scikit-learn: machine learning in Python. J Mach Learn Res 12, 2825–2830 (2011)MathSciNet
50.
go back to reference Yu, Z.; Wang, Z.; You, J.; Zhang, J.; Liu, J.; Wong, H.S.; Han, G.: A new kind of non-parametric test for statistical comparison of multiple classifiers over multiple datasets. IEEE Trans. Cybernet. 47(12), 4418–4431 (2016)CrossRef Yu, Z.; Wang, Z.; You, J.; Zhang, J.; Liu, J.; Wong, H.S.; Han, G.: A new kind of non-parametric test for statistical comparison of multiple classifiers over multiple datasets. IEEE Trans. Cybernet. 47(12), 4418–4431 (2016)CrossRef
51.
go back to reference Siegel, S.: Non-parametric statistics. Am. Stat. 11(3), 13–19 (1957) Siegel, S.: Non-parametric statistics. Am. Stat. 11(3), 13–19 (1957)
52.
go back to reference Sheldon, M.R.; Fillyaw, M.J.; Thompson, W.D.: The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother. Res. Int. 1(4), 221–228 (1996)CrossRefPubMed Sheldon, M.R.; Fillyaw, M.J.; Thompson, W.D.: The use and interpretation of the Friedman test in the analysis of ordinal-scale data in repeated measures designs. Physiother. Res. Int. 1(4), 221–228 (1996)CrossRefPubMed
53.
go back to reference Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetCrossRef Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11(1), 86–92 (1940)MathSciNetCrossRef
54.
go back to reference García, S.; Fernández, A.; Luengo, J.; Herrera, F.: Advanced non-parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)CrossRef García, S.; Fernández, A.; Luengo, J.; Herrera, F.: Advanced non-parametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)CrossRef
55.
go back to reference Iman, R.L.; Davenport, J.M.: Approximations of the critical region of the fbietkan statistic. Commun. Statistics-Theory and Methods 9(6), 571–595 (1980)CrossRef Iman, R.L.; Davenport, J.M.: Approximations of the critical region of the fbietkan statistic. Commun. Statistics-Theory and Methods 9(6), 571–595 (1980)CrossRef
Metadata
Title
An Intelligent IoT-Cloud-Based Air Pollution Forecasting Model Using Univariate Time-Series Analysis
Authors
Manzoor Ansari
Mansaf Alam
Publication date
25-05-2023
Publisher
Springer Berlin Heidelberg
Published in
Arabian Journal for Science and Engineering / Issue 3/2024
Print ISSN: 2193-567X
Electronic ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-023-07876-9

Other articles of this Issue 3/2024

Arabian Journal for Science and Engineering 3/2024 Go to the issue

Research Article-Computer Engineering and Computer Science

Deep Learning-Based Noise Type Classification and Removal for Drone Image Restoration

Research Article-Computer Engineering and Computer Science

A Novel Cyber Security Model Using Deep Transfer Learning

Premium Partners