Skip to main content
Top
Published in: Soft Computing 22/2020

29-05-2020 | Methodologies and Application

An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm

Authors: D. Sudha, J. Priyadarshini

Published in: Soft Computing | Issue 22/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Multiple vehicle detection is a promising and challenging role in intelligent transportation systems and computer vision applications. Most existing methods detect vehicles with bounding box representation and fail to offer the location of vehicles. However, the location information is vigorous for several real-time applications such as the motion estimation and trajectory of vehicles moving on the road. In this paper, we propose an advanced deep learning method called enhanced you only look once v3 and improved visual background extractor algorithms are used to detect the multi-type and multiple vehicles in an input video. More precisely, tracking is to find the trace of the upcoming vehicles using a combined Kalman filtering algorithm and particle filter techniques. To improve the tracking results, further, we propose the technique, namely multiple vehicle tracking algorithms, and tested with different weather conditions such as sunny, rainy, night and fog in input videos of 30 frames per second. The major research issues were found in the recent kinds of literature in ITS sector which is closely related to the real-time traffic environmental problems such as occlusions, camera oscillations, background changes, sensors, cluttering, camouflage, varying illumination changes in a day- and sunny and at nighttime vision. The experimental results are tested with the ten different input videos and two benchmark datasets KITTI and DETRAC. The most eight high- level features have been considered for automatic feature extraction and annotation. The attributes are length, width, height, number of mirrors and wheels and windscreen shielding glass to detect the target region of interest (vehicles) on road. In addition, further experiments are carried out in multiple-input videos of high definition quality using a monocular camera, and the average accuracy is 98.6%, and the time complexity of the algorithm is O(n) and also tracking results attained 96.6%. The dataset and input videos are discussed in comparative results with the F-test measure done for multiple vehicles.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alahi A, Bierlaire M, Vandergheynst P (2014) Robust real-time pedestrian detection in an urban environment with low-resolution cameras. Transp Res Part C 39:113–128CrossRef Alahi A, Bierlaire M, Vandergheynst P (2014) Robust real-time pedestrian detection in an urban environment with low-resolution cameras. Transp Res Part C 39:113–128CrossRef
go back to reference Battiato S, Farinella GM, Furnari A, Puglisi G, Snijders A, Spiekstra J (2015) An integrated system for vehicle tracking and classification. Expert Syst Appl 42(21):7275CrossRef Battiato S, Farinella GM, Furnari A, Puglisi G, Snijders A, Spiekstra J (2015) An integrated system for vehicle tracking and classification. Expert Syst Appl 42(21):7275CrossRef
go back to reference Bhaskar H, Dwivedi K, Dogra DP, Al-Mualla M, Mihaylova L (2015) Autonomous detection and tracking under illumination changes, occlusions and moving camera. Signal Process 117:343–354CrossRef Bhaskar H, Dwivedi K, Dogra DP, Al-Mualla M, Mihaylova L (2015) Autonomous detection and tracking under illumination changes, occlusions and moving camera. Signal Process 117:343–354CrossRef
go back to reference Cai Y, Wang H, Zheng Z, Sun X (2017) Scene-adaptive vehicle detection algorithm based on a composite deep structure. IEEE Access 5:22804–22811CrossRef Cai Y, Wang H, Zheng Z, Sun X (2017) Scene-adaptive vehicle detection algorithm based on a composite deep structure. IEEE Access 5:22804–22811CrossRef
go back to reference Chen BH, Shi LF, Ke X (2018) A robust moving object detection in multi-scenario big data for video surveillance. IEEE Trans Circuits Syst Video Technol 29(4):982–995CrossRef Chen BH, Shi LF, Ke X (2018) A robust moving object detection in multi-scenario big data for video surveillance. IEEE Trans Circuits Syst Video Technol 29(4):982–995CrossRef
go back to reference Ćorović A, Ilić V, Durić S, Marijan M, Pavković B (2018) The real-time detection of traffic participants using YOLO algorithm. In: IEEE access: 26th telecommunications forum (TELFOR), 2018, pp 1–4 Ćorović A, Ilić V, Durić S, Marijan M, Pavković B (2018) The real-time detection of traffic participants using YOLO algorithm. In: IEEE access: 26th telecommunications forum (TELFOR), 2018, pp 1–4
go back to reference Deng Z, Sun H, Zhou S, Zhao J, Zou H (2017) Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks. IEEE J Selected Topics Appl Earth Obser Remote Sens 10(8):3652–3664CrossRef Deng Z, Sun H, Zhou S, Zhao J, Zou H (2017) Toward fast and accurate vehicle detection in aerial images using coupled region-based convolutional neural networks. IEEE J Selected Topics Appl Earth Obser Remote Sens 10(8):3652–3664CrossRef
go back to reference Gustafsson and Frederick (2018) Statistical sensor fusion of vehicle tracking on road. IEEE Access: ISBN:978-9144127248, pp 218–228 Gustafsson and Frederick (2018) Statistical sensor fusion of vehicle tracking on road. IEEE Access: ISBN:978-9144127248, pp 218–228
go back to reference Hassannejad H, Medici P, Cardarelli E, Cerri P (2015) Detection of moving objects in roundabouts based on a monocular system. Expert Syst Appl 42(9):4167–4176CrossRef Hassannejad H, Medici P, Cardarelli E, Cerri P (2015) Detection of moving objects in roundabouts based on a monocular system. Expert Syst Appl 42(9):4167–4176CrossRef
go back to reference Kellner D, Barjenbruch M, Klappstein J, Dickmann J, Dietmayer K (2016) Tracking of extended objects with high-resolution Doppler radar. IEEE Trans Intell Transp Syst 17(5):1493–1509CrossRef Kellner D, Barjenbruch M, Klappstein J, Dickmann J, Dietmayer K (2016) Tracking of extended objects with high-resolution Doppler radar. IEEE Trans Intell Transp Syst 17(5):1493–1509CrossRef
go back to reference Kim T, Jeong HY (2014) A novel algorithm for crash detection under general road scenes using crash probabilities and an interactive multiple model particle filter. IEEE Trans Intell Transp Syst 15(6):2480–2490CrossRef Kim T, Jeong HY (2014) A novel algorithm for crash detection under general road scenes using crash probabilities and an interactive multiple model particle filter. IEEE Trans Intell Transp Syst 15(6):2480–2490CrossRef
go back to reference Li S, Yu H, Zhang J, Yang K, Bin R (2014) Video-based traffic data collection system for multiple vehicle types. IET Intell Transp Syst 8(2):164–174CrossRef Li S, Yu H, Zhang J, Yang K, Bin R (2014) Video-based traffic data collection system for multiple vehicle types. IET Intell Transp Syst 8(2):164–174CrossRef
go back to reference J Lin, M Sun (2018) A YOLO-based traffic counting system. In: IEEE transactions on pattern analysis and artificial intelligence, pp 234–235 J Lin, M Sun (2018) A YOLO-based traffic counting system. In: IEEE transactions on pattern analysis and artificial intelligence, pp 234–235
go back to reference Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum HY (2010) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367 Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum HY (2010) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367
go back to reference Lu K, Li J, Zhou L, Hu X, An X, He H (2018a) Generalized haar filter-based object detection for car sharing services. IEEE Trans Automat Sci Eng 15(4):1448–1458CrossRef Lu K, Li J, Zhou L, Hu X, An X, He H (2018a) Generalized haar filter-based object detection for car sharing services. IEEE Trans Automat Sci Eng 15(4):1448–1458CrossRef
go back to reference Lu K, Li J, Zhou L, Hu X, An X, He H (2018b) Generalized haar filter-based object detection for car sharing services. IEEE Trans Autom Sci Eng 15(4):1448–1458CrossRef Lu K, Li J, Zhou L, Hu X, An X, He H (2018b) Generalized haar filter-based object detection for car sharing services. IEEE Trans Autom Sci Eng 15(4):1448–1458CrossRef
go back to reference Rangesh A, Ohn-Bar E, Trivedi MM (2016) Long-term multi-cue tracking of hands in vehicles. IEEE Trans Intell Transp Syst 17(5):1483–1492CrossRef Rangesh A, Ohn-Bar E, Trivedi MM (2016) Long-term multi-cue tracking of hands in vehicles. IEEE Trans Intell Transp Syst 17(5):1483–1492CrossRef
go back to reference Ravikumar, Ling-Feng Shi, and Xiao Ke (2017) A robust moving object detection in multi-scenario big data for video surveillance. IEEE Transactions on circuits and systems for video technology, 2017, pp 167–172 Ravikumar, Ling-Feng Shi, and Xiao Ke (2017) A robust moving object detection in multi-scenario big data for video surveillance. IEEE Transactions on circuits and systems for video technology, 2017, pp 167–172
go back to reference Satzoda RK, Trivedi MM (2016) Multipart vehicle detection using symmetry-derived analysis and active learning. IEEE Trans Intell Transport Syst 17(4):926–937CrossRef Satzoda RK, Trivedi MM (2016) Multipart vehicle detection using symmetry-derived analysis and active learning. IEEE Trans Intell Transport Syst 17(4):926–937CrossRef
go back to reference Tao J, Wang H, Zhang X, Li X, Yang H (2018) An object detection system based on YOLO in traffic scene. In: 6th International conference on computer science and network technology, pp 315–319 Tao J, Wang H, Zhang X, Li X, Yang H (2018) An object detection system based on YOLO in traffic scene. In: 6th International conference on computer science and network technology, pp 315–319
go back to reference Tian B, Li Y, Li B, Wen D (2014) Rear-view vehicle detection and tracking by combining multiple parts for complex urban surveillance. IEEE Trans Intell Transp Syst 15(2):597–606CrossRef Tian B, Li Y, Li B, Wen D (2014) Rear-view vehicle detection and tracking by combining multiple parts for complex urban surveillance. IEEE Trans Intell Transp Syst 15(2):597–606CrossRef
go back to reference Wang CC, Thorpe C, Suppe A (2015) Ladder based detection and tracking of moving objects from a ground vehicle at high speeds. In: IEEE, pp 416–421 Wang CC, Thorpe C, Suppe A (2015) Ladder based detection and tracking of moving objects from a ground vehicle at high speeds. In: IEEE, pp 416–421
go back to reference Xu Z, Shi H, Li N, Xiang C (2018)Vehicle detection under UAV based on optimal dense YOLO method. In: IEEE 5th international conference on systems and informatics, pp 247–258 Xu Z, Shi H, Li N, Xiang C (2018)Vehicle detection under UAV based on optimal dense YOLO method. In: IEEE 5th international conference on systems and informatics, pp 247–258
go back to reference Zhao N, Xia Y, Xu C, Shi X, Liu Y (2015) APPOS: an adaptive partial occlusion segmentation method for multiple vehicles tracking. J Vis Commun Image R 37:25–31CrossRef Zhao N, Xia Y, Xu C, Shi X, Liu Y (2015) APPOS: an adaptive partial occlusion segmentation method for multiple vehicles tracking. J Vis Commun Image R 37:25–31CrossRef
Metadata
Title
An intelligent multiple vehicle detection and tracking using modified vibe algorithm and deep learning algorithm
Authors
D. Sudha
J. Priyadarshini
Publication date
29-05-2020
Publisher
Springer Berlin Heidelberg
Published in
Soft Computing / Issue 22/2020
Print ISSN: 1432-7643
Electronic ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-020-05042-z

Other articles of this Issue 22/2020

Soft Computing 22/2020 Go to the issue

Premium Partner