Skip to main content
Top
Published in:
Cover of the book

2017 | OriginalPaper | Chapter

1. An Introduction to Sol-Gel Processing for Aerogels

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Sol-gel processing facilitates effortless control of the composition, properties, and architecture of nanosystems. For this reason, the technology has been adapted as a popular route for the preparation of nanostructures. The process supports the preparation of intricate three-dimensional networks extended throughout a liquid phase (a gel) through the agglomeration of nanoparticles dispersed within a colloidal suspension (sol). In order to gain a greater understanding of the process before exploring the possible applications of the technology, this chapter outlines the activities involved in sol-gel processing. The formation of sol-gel materials is explained by briefly focusing on the mechanisms of hydrolysis and condensation, in addition to ageing and drying of wet gels. Sol-gel processing can be used to form a range of architectures from fibres and films to fine powders and monoliths, however this chapter will focus on sol-gel processing for aerogels specifically.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Dorcheh, A.S., Abbasi, M.H.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1–3), 10–26 (2008) Dorcheh, A.S., Abbasi, M.H.: Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol. 199(1–3), 10–26 (2008)
2.
go back to reference Du, A., Zhou, B., Zhang, Z., Shen, J.: A special material or a new state of matter: a review and reconsideration of the aerogel. Mater. 6(3), 941–968 (2013) Du, A., Zhou, B., Zhang, Z., Shen, J.: A special material or a new state of matter: a review and reconsideration of the aerogel. Mater. 6(3), 941–968 (2013)
3.
go back to reference Riffat, S.B., Qiu, G.: A review of state-of-the-art aerogel applications in buildings. Int. J. Low-Carbon Technol. 8(1), 1–6 (2013) Riffat, S.B., Qiu, G.: A review of state-of-the-art aerogel applications in buildings. Int. J. Low-Carbon Technol. 8(1), 1–6 (2013)
4.
go back to reference Fricke, J.: Aerogels—highly tenuous solids with fascinating properties. J. Non-Cryst. Solids 100(1–3), 169–173 (1988) Fricke, J.: Aerogels—highly tenuous solids with fascinating properties. J. Non-Cryst. Solids 100(1–3), 169–173 (1988)
5.
go back to reference Fricke, J., Emmerling, A.: Aerogels. J. Am. Ceram. Soc. 75(8), 2027–2035 (1992)CrossRef Fricke, J., Emmerling, A.: Aerogels. J. Am. Ceram. Soc. 75(8), 2027–2035 (1992)CrossRef
6.
go back to reference Carraher Jr, C.E.: Carraher’s polymer chemistry, CRC Press (2013) Carraher Jr, C.E.: Carraher’s polymer chemistry, CRC Press (2013)
7.
go back to reference Schultz, J.M., Jensen, K.I., Kristiansen, F.H.: Super insulating aerogel glazing. Sol. Energy Mater. Sol. Cells 89(2), 275–285 (2005) Schultz, J.M., Jensen, K.I., Kristiansen, F.H.: Super insulating aerogel glazing. Sol. Energy Mater. Sol. Cells 89(2), 275–285 (2005)
8.
go back to reference Eisen, H.J., Wen, L., Hickey G., Braun, D.: Sojourner mars rover thermal performance, SAE Technical Paper (1998) Eisen, H.J., Wen, L., Hickey G., Braun, D.: Sojourner mars rover thermal performance, SAE Technical Paper (1998)
9.
go back to reference Fesmire, J.E.: Aerogel insulation systems for space launch applications. Cryogenics 46(2), 111–117 (2006) Fesmire, J.E.: Aerogel insulation systems for space launch applications. Cryogenics 46(2), 111–117 (2006)
10.
go back to reference Ackerman, W.C., Changming, J., Cho, C.-C., Gnade, B.E., Johnston, G.C., Smith, D.M.: Porous dielectric material with improved pore surface properties for electronics applications. Google Patents (2000) Ackerman, W.C., Changming, J., Cho, C.-C., Gnade, B.E., Johnston, G.C., Smith, D.M.: Porous dielectric material with improved pore surface properties for electronics applications. Google Patents (2000)
11.
go back to reference Cho, C.-C., Gnade, B., Levine, J.D.: Low density, high porosity material as gate dielectric for field emission device. Google Patents (1996) Cho, C.-C., Gnade, B., Levine, J.D.: Low density, high porosity material as gate dielectric for field emission device. Google Patents (1996)
12.
go back to reference Wang, C.-T., Wu, C.-L., Chen, I., Huang, Y.-H.: Humidity sensors based on silica nanoparticle aerogel thin films. Sens. Actuators B: Chem. 107(1), 402–410 (2005) Wang, C.-T., Wu, C.-L., Chen, I., Huang, Y.-H.: Humidity sensors based on silica nanoparticle aerogel thin films. Sens. Actuators B: Chem. 107(1), 402–410 (2005)
13.
go back to reference Khuri-Yakub, B., Kim, J., Chou, C.-H., Parent, P., Kino, G. (eds.): A new design for air transducers. Ultrasonics Symposium, 1988 Proceedings, IEEE (1988) Khuri-Yakub, B., Kim, J., Chou, C.-H., Parent, P., Kino, G. (eds.): A new design for air transducers. Ultrasonics Symposium, 1988 Proceedings, IEEE (1988)
14.
go back to reference Ahmed, M.S., Attia, Y.A.: Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non-Cryst. Solids 186, 402–407 (1995) Ahmed, M.S., Attia, Y.A.: Aerogel materials for photocatalytic detoxification of cyanide wastes in water. J. Non-Cryst. Solids 186, 402–407 (1995)
15.
go back to reference Reynolds, J.G., Coronado, P.R., Hrubesh, L.W.: Hydrophobic aerogels for oil-spill cleanup? intrinsic absorbing properties. Energ Source 23(9), 831–843 (2001) Reynolds, J.G., Coronado, P.R., Hrubesh, L.W.: Hydrophobic aerogels for oil-spill cleanup? intrinsic absorbing properties. Energ Source 23(9), 831–843 (2001)
16.
go back to reference Danilyuk, A., Kirillov, V., Savelieva, M., Bobrovnikov, V., Buzykaev, A., Kravchenko, E., et al.: Recent results on aerogel development for use in Cherenkov counters. Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 494(1), 491–494 (2002) Danilyuk, A., Kirillov, V., Savelieva, M., Bobrovnikov, V., Buzykaev, A., Kravchenko, E., et al.: Recent results on aerogel development for use in Cherenkov counters. Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 494(1), 491–494 (2002)
17.
go back to reference Buzykaev, A., Danilyuk, A., Ganzhur, S., Gorodetskaya, T., Kravchenko, E., Onuchin, A., et al.: Aerogels with high optical parameters for Cherenkov counters. Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 379(3), 465–467 (1996) Buzykaev, A., Danilyuk, A., Ganzhur, S., Gorodetskaya, T., Kravchenko, E., Onuchin, A., et al.: Aerogels with high optical parameters for Cherenkov counters. Nuclear instruments and methods in physics research section A: accelerators. Spectrometers, Detectors and Associated Equipment 379(3), 465–467 (1996)
18.
go back to reference Plata, D.L., Briones, Y.J., Wolfe, R.L., Carroll, M.K., Bakrania, S.D., Mandel, S.G., et al.: Aerogel-platform optical sensors for oxygen gas. J. Non-Cryst. Solids 350, 326–335 (2004) Plata, D.L., Briones, Y.J., Wolfe, R.L., Carroll, M.K., Bakrania, S.D., Mandel, S.G., et al.: Aerogel-platform optical sensors for oxygen gas. J. Non-Cryst. Solids 350, 326–335 (2004)
19.
go back to reference Baetens, R., Jelle, B.P., Gustavsen, A.: Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 43(4), 761–769 (2011) Baetens, R., Jelle, B.P., Gustavsen, A.: Aerogel insulation for building applications: A state-of-the-art review. Energy Build. 43(4), 761–769 (2011)
20.
go back to reference Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., et al.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy 34(11), 4889–4899 (2009) Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., et al.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrogen Energy 34(11), 4889–4899 (2009)
21.
go back to reference Miller, J., Dunn, B., Tran, T., Pekala, R.: Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144(12), L309–L311 (1997) Miller, J., Dunn, B., Tran, T., Pekala, R.: Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144(12), L309–L311 (1997)
22.
go back to reference Pajonk, G.: Aerogel catalysts. Applied Catalysis 72(2), 217–266 (1991) Pajonk, G.: Aerogel catalysts. Applied Catalysis 72(2), 217–266 (1991)
23.
go back to reference Reynolds, J.G., Hair, L.M., Coronado, P.R., Droege M.W., Wong, J. (eds.): Aerogel derived catalysts. MRS Proceedings, Cambridge Univ Press (1996) Reynolds, J.G., Hair, L.M., Coronado, P.R., Droege M.W., Wong, J. (eds.): Aerogel derived catalysts. MRS Proceedings, Cambridge Univ Press (1996)
24.
go back to reference Shukla, N., Kosny, J.: Aerogel thermal insulation—technology review and cost study for building enclosure applications 120, 294–307 (2014) Shukla, N., Kosny, J.: Aerogel thermal insulation—technology review and cost study for building enclosure applications 120, 294–307 (2014)
25.
go back to reference Gash, A.E., Tillotson, T.M., Satcher Jr., J.H., Hrubesh, L.W., Simpson, R.L.: New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids 285(1–3), 22–28 (2001) Gash, A.E., Tillotson, T.M., Satcher Jr., J.H., Hrubesh, L.W., Simpson, R.L.: New sol–gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids 285(1–3), 22–28 (2001)
26.
go back to reference Wagh, P.B., Begag, R., Pajonk, G.M., Rao, A.V., Haranath, D.: Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater. Chem. Phys. 57(3), 214–218 (1999) Wagh, P.B., Begag, R., Pajonk, G.M., Rao, A.V., Haranath, D.: Comparison of some physical properties of silica aerogel monoliths synthesized by different precursors. Mater. Chem. Phys. 57(3), 214–218 (1999)
27.
go back to reference Zhang, H., Hong C., Qiao, Y.: Synthesis, structural and thermal properties of nano-porous SiO2-based aerogels. INTECH Open Access Publisher (2011) Zhang, H., Hong C., Qiao, Y.: Synthesis, structural and thermal properties of nano-porous SiO2-based aerogels. INTECH Open Access Publisher (2011)
28.
go back to reference Brinker C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing. Gulf Professional Publishing (1990) Brinker C.J., Scherer, G.W.: Sol-gel science: the physics and chemistry of sol-gel processing. Gulf Professional Publishing (1990)
29.
go back to reference Kim, P.B.S.J.-K., Park J.-K., Kim, H.-K.: Influence of solvent exchange on the physical properties of sodium silicate based aerogel prepared at ambient pressure (2006) Kim, P.B.S.J.-K., Park J.-K., Kim, H.-K.: Influence of solvent exchange on the physical properties of sodium silicate based aerogel prepared at ambient pressure (2006)
30.
go back to reference Schwertfeger, F., Frank, D., Schmidt, M.: Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids 225(0), 24–29 (1998) Schwertfeger, F., Frank, D., Schmidt, M.: Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J. Non-Cryst. Solids 225(0), 24–29 (1998)
31.
go back to reference Gurav, J.L., Rao, A.V., Rao, A.P., Nadargi, D.Y., Bhagat, S.D.: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure. J. Alloy. Compd. 476(1–2), 397–402 (2009) Gurav, J.L., Rao, A.V., Rao, A.P., Nadargi, D.Y., Bhagat, S.D.: Physical properties of sodium silicate based silica aerogels prepared by single step sol–gel process dried at ambient pressure. J. Alloy. Compd. 476(1–2), 397–402 (2009)
32.
go back to reference Rao, A.V., Bangi, U.K.H., Kavale, M.S., Imai, H., Hirashima, H.: Reduction in the processing time of doped sodium silicate based ambient pressure dried aerogels using shaker. Microporous Mesoporous Mater. 134(1–3), 93–99 (2010) Rao, A.V., Bangi, U.K.H., Kavale, M.S., Imai, H., Hirashima, H.: Reduction in the processing time of doped sodium silicate based ambient pressure dried aerogels using shaker. Microporous Mesoporous Mater. 134(1–3), 93–99 (2010)
33.
go back to reference Bangi, U.K., Rao, A.V., Rao, A.P.: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci. Technol. Adv. Mater. 9(3), 035006 (2008) Bangi, U.K., Rao, A.V., Rao, A.P.: A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci. Technol. Adv. Mater. 9(3), 035006 (2008)
34.
go back to reference Sarawade, P.B., Kim, J.-K., Hilonga, A., Kim, H.T.: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci. 12(5), 911–918 (2010) Sarawade, P.B., Kim, J.-K., Hilonga, A., Kim, H.T.: Production of low-density sodium silicate-based hydrophobic silica aerogel beads by a novel fast gelation process and ambient pressure drying process. Solid State Sci. 12(5), 911–918 (2010)
35.
go back to reference Bangi, U.K.H., Jung, I.-K., Park, C.-S., Baek, S., Park, H.-H.: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying. Solid State Sci. 18(0), 50–57 (2013) Bangi, U.K.H., Jung, I.-K., Park, C.-S., Baek, S., Park, H.-H.: Optically transparent silica aerogels based on sodium silicate by a two step sol–gel process and ambient pressure drying. Solid State Sci. 18(0), 50–57 (2013)
36.
go back to reference Shao, Z., Luo, F., Cheng, X., Zhang, Y.: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater. Chem. Phys. 141(1), 570–575 (2013) Shao, Z., Luo, F., Cheng, X., Zhang, Y.: Superhydrophobic sodium silicate based silica aerogel prepared by ambient pressure drying. Mater. Chem. Phys. 141(1), 570–575 (2013)
37.
go back to reference Sinkó, K.: Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Mater. 3(1), 704–740 (2010) Sinkó, K.: Influence of Chemical Conditions on the Nanoporous Structure of Silicate Aerogels. Mater. 3(1), 704–740 (2010)
38.
go back to reference Norris P.M., Shrinivasan, S.: Aerogels: unique material, fascinating properties and unlimited applications. Annu. Rev. Heat Transf. 14(14), (2005) Norris P.M., Shrinivasan, S.: Aerogels: unique material, fascinating properties and unlimited applications. Annu. Rev. Heat Transf. 14(14), (2005)
39.
go back to reference Pierre, A.C., Pajonk, G.M.: Chemistry of Aerogels and Their Applications. Chem. Rev. 102, 4243–4265 (2002) Pierre, A.C., Pajonk, G.M.: Chemistry of Aerogels and Their Applications. Chem. Rev. 102, 4243–4265 (2002)
40.
go back to reference Brinker, C., Keefer, K., Schaefer, D., Ashley, C.: Sol-gel transition in simple silicates. J. Non-Cryst. Solids 48(1), 47–64 (1982) Brinker, C., Keefer, K., Schaefer, D., Ashley, C.: Sol-gel transition in simple silicates. J. Non-Cryst. Solids 48(1), 47–64 (1982)
41.
go back to reference Rao, A.V., Pajonk, G., Parvathy, N.: Effect of solvents and catalysts on monolithicity and physical properties of silica aerogels. J. Mater. Sci. 29(7), 1807–1817 (1994) Rao, A.V., Pajonk, G., Parvathy, N.: Effect of solvents and catalysts on monolithicity and physical properties of silica aerogels. J. Mater. Sci. 29(7), 1807–1817 (1994)
42.
go back to reference Karmakar, B., De, G., Ganguli, D.: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non-Cryst. Solids 272(2–3), 119–126 (2000) Karmakar, B., De, G., Ganguli, D.: Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS. J. Non-Cryst. Solids 272(2–3), 119–126 (2000)
43.
go back to reference Wright J.D., Sommerdijk, N.A.: Sol-gel materials: chemistry and applications. CRC press (2000) Wright J.D., Sommerdijk, N.A.: Sol-gel materials: chemistry and applications. CRC press (2000)
44.
go back to reference Venkateswara Rao, A., Bhagat, S.D.: Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid–base) sol–gel process. Solid State Sci. 6(9), 945–952 (2004) Venkateswara Rao, A., Bhagat, S.D.: Synthesis and physical properties of TEOS-based silica aerogels prepared by two step (acid–base) sol–gel process. Solid State Sci. 6(9), 945–952 (2004)
45.
go back to reference Kirkbir, F., Murata, H., Meyers, D., Chaudhuri, S.R., Sarkar, A.: Drying and sintering of sol-gel derived large SiO2 monoliths. J. Sol-Gel. Sci. Technol. 6(3), 203–217 (1996) Kirkbir, F., Murata, H., Meyers, D., Chaudhuri, S.R., Sarkar, A.: Drying and sintering of sol-gel derived large SiO2 monoliths. J. Sol-Gel. Sci. Technol. 6(3), 203–217 (1996)
46.
go back to reference Wagh, P., Rao, A.V., Haranath, D.: Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels. Mater. Chem. Phys. 53(1), 41–47 (1998) Wagh, P., Rao, A.V., Haranath, D.: Influence of molar ratios of precursor, solvent and water on physical properties of citric acid catalyzed TEOS silica aerogels. Mater. Chem. Phys. 53(1), 41–47 (1998)
47.
go back to reference Nadargi, D.Y., Kalesh, R.R., Rao, A.V.: Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. J. Alloy. Compd. 480(2), 689–695 (2009) Nadargi, D.Y., Kalesh, R.R., Rao, A.V.: Rapid reduction in gelation time and impregnation of hydrophobic property in the tetraethoxysilane (TEOS) based silica aerogels using NH4F catalyzed single step sol–gel process. J. Alloy. Compd. 480(2), 689–695 (2009)
48.
go back to reference Sarawade, P.B., Kim, J.-K., Kim, H.-K., Kim, H.-T.: High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl. Surf. Sci. 254(2), 574–579 (2007) Sarawade, P.B., Kim, J.-K., Kim, H.-K., Kim, H.-T.: High specific surface area TEOS-based aerogels with large pore volume prepared at an ambient pressure. Appl. Surf. Sci. 254(2), 574–579 (2007)
49.
go back to reference Hæreid, S., Dahle, M., Lima, S., Einarsrud, M.A.: Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J. Non-Cryst. Solids 186(0), 96–103 (1995) Hæreid, S., Dahle, M., Lima, S., Einarsrud, M.A.: Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J. Non-Cryst. Solids 186(0), 96–103 (1995)
50.
go back to reference Smitha, S., Shajesh, P., Aravind, P., Kumar, S.R., Pillai, P.K., Warrier, K.: Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater. 91(1), 286–292 (2006) Smitha, S., Shajesh, P., Aravind, P., Kumar, S.R., Pillai, P.K., Warrier, K.: Effect of aging time and concentration of aging solution on the porosity characteristics of subcritically dried silica aerogels. Microporous Mesoporous Mater. 91(1), 286–292 (2006)
51.
go back to reference Hæreid, S., Anderson, J., Einarsrud, M.A., Hua, D.W., Smith, D.M.: Thermal and temporal aging of TMOS-based aerogel precursors in water. J. Non-Cryst. Solids 185(3), 221–226 (1995) Hæreid, S., Anderson, J., Einarsrud, M.A., Hua, D.W., Smith, D.M.: Thermal and temporal aging of TMOS-based aerogel precursors in water. J. Non-Cryst. Solids 185(3), 221–226 (1995)
52.
go back to reference Estella, J., Echeverría, J.C., Laguna, M., Garrido, J.J.: Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater. 102(1–3), 274–282 (2007) Estella, J., Echeverría, J.C., Laguna, M., Garrido, J.J.: Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater. 102(1–3), 274–282 (2007)
53.
go back to reference Strøm, R., Masmoudi, Y., Rigacci, A., Petermann, G., Gullberg, L., Chevalier, B., Einarsrud, M.-A.: Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J. Sol-Gel. Sci. Technol. 41(3), 291–298 (2007) Strøm, R., Masmoudi, Y., Rigacci, A., Petermann, G., Gullberg, L., Chevalier, B., Einarsrud, M.-A.: Strengthening and aging of wet silica gels for up-scaling of aerogel preparation. J. Sol-Gel. Sci. Technol. 41(3), 291–298 (2007)
54.
go back to reference Zarzycki, J., Prassas, M., Phalippou, J.: Synthesis of glasses from gels: the problem of monolithic gels. J. Mater. Sci. 17(11), 3371–3379 (1982) Zarzycki, J., Prassas, M., Phalippou, J.: Synthesis of glasses from gels: the problem of monolithic gels. J. Mater. Sci. 17(11), 3371–3379 (1982)
55.
go back to reference Haereid, S., Nilsen, E., Ranum, V., Einarsrud, M.-A.: Thermal and temporal aging of two step acid-base catalyzed silica gels in water/ethanol solutions. J. Sol-Gel. Sci. Technol. 8(1–3), 153–157 (1997) Haereid, S., Nilsen, E., Ranum, V., Einarsrud, M.-A.: Thermal and temporal aging of two step acid-base catalyzed silica gels in water/ethanol solutions. J. Sol-Gel. Sci. Technol. 8(1–3), 153–157 (1997)
56.
go back to reference Einarsrud, M.-A., Nilsen, E.: Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J. Non-Cryst. Solids 226(1–2), 122–128 (1998) Einarsrud, M.-A., Nilsen, E.: Strengthening of water glass and colloidal sol based silica gels by aging in TEOS. J. Non-Cryst. Solids 226(1–2), 122–128 (1998)
57.
go back to reference Einarsrud, M.-A., Haereid, S.: Preparation of transparent, monolithic silica xerogels with low density. J. Sol-Gel. Sci. Technol. 2(1–3), 903–906 (1994) Einarsrud, M.-A., Haereid, S.: Preparation of transparent, monolithic silica xerogels with low density. J. Sol-Gel. Sci. Technol. 2(1–3), 903–906 (1994)
58.
go back to reference Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B.: Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34(0), 273–299 (2014) Cuce, E., Cuce, P.M., Wood, C.J., Riffat, S.B.: Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew. Sustain. Energy Rev. 34(0), 273–299 (2014)
59.
go back to reference Hæreid, S., Nilsen, E., Einarsrud, M.-A.: Properties of silica gels aged in TEOS. J. Non-Cryst. Solids 204(3), 228–234 (1996) Hæreid, S., Nilsen, E., Einarsrud, M.-A.: Properties of silica gels aged in TEOS. J. Non-Cryst. Solids 204(3), 228–234 (1996)
60.
go back to reference Rao, A.V., Rao, A.P., Kulkarni, M.: Influence of gel aging and Na2SiO3/H2O molar ratio on monolithicity and physical properties of water-glass-based aero-gel dried at atmospheric pressure. J. Non-Cryst. Solids 350, 224–229 (2004) Rao, A.V., Rao, A.P., Kulkarni, M.: Influence of gel aging and Na2SiO3/H2O molar ratio on monolithicity and physical properties of water-glass-based aero-gel dried at atmospheric pressure. J. Non-Cryst. Solids 350, 224–229 (2004)
61.
go back to reference He, F., Zhao, H., Qu, X., Zhang, C., Qiu, W.: Modified aging process for silica aerogel. J. Mater. Process. Technol. 209(3), 1621–1626 (2009) He, F., Zhao, H., Qu, X., Zhang, C., Qiu, W.: Modified aging process for silica aerogel. J. Mater. Process. Technol. 209(3), 1621–1626 (2009)
62.
go back to reference Kirkbir, F., Murata, H., Meyers, D., Chaudhuri, S.: Drying of aerogels in different solvents between atmospheric and supercritical pressures. J. Non-Cryst. Solids 225, 14–18 (1998) Kirkbir, F., Murata, H., Meyers, D., Chaudhuri, S.: Drying of aerogels in different solvents between atmospheric and supercritical pressures. J. Non-Cryst. Solids 225, 14–18 (1998)
63.
go back to reference Cha, Y.C., Kim, C.E., Lee, S.H., Hwang, H.J., Moon, J.W., Han, I.S., et al.: Synthesis of silica aerogel thin film from waterglass. Solid State Phenom. 124, 671–674 (2007) Cha, Y.C., Kim, C.E., Lee, S.H., Hwang, H.J., Moon, J.W., Han, I.S., et al.: Synthesis of silica aerogel thin film from waterglass. Solid State Phenom. 124, 671–674 (2007)
64.
go back to reference Kim, C.E., Yoon, J.S., Hwang, H.J.: Synthesis of nanoporous silica aerogel by ambient pressure drying. J. Sol-Gel. Sci. Technol. 49(1), 47–52 (2009) Kim, C.E., Yoon, J.S., Hwang, H.J.: Synthesis of nanoporous silica aerogel by ambient pressure drying. J. Sol-Gel. Sci. Technol. 49(1), 47–52 (2009)
65.
go back to reference Patel, P.R., Purohit, N.S., Suthar, M.A.: An Overview of Silica Aerogels. Int. J. ChemTech Res. 1(4), 1052–1057 (2009) Patel, P.R., Purohit, N.S., Suthar, M.A.: An Overview of Silica Aerogels. Int. J. ChemTech Res. 1(4), 1052–1057 (2009)
66.
go back to reference Scherer, G.W., Hæreid, S., Nilsen, E., Einarsrud, M.-A.: Shrinkage of silica gels aged in TEOS. J. Non-Cryst. Solids 202(1), 42–52 (1996) Scherer, G.W., Hæreid, S., Nilsen, E., Einarsrud, M.-A.: Shrinkage of silica gels aged in TEOS. J. Non-Cryst. Solids 202(1), 42–52 (1996)
67.
go back to reference Tewari, P.H., Hunt, A.J., Lofftus, K.D.: Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 3(9), 363–367 (1985) Tewari, P.H., Hunt, A.J., Lofftus, K.D.: Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett. 3(9), 363–367 (1985)
68.
go back to reference Shi, F., Wang, L., Liu, J.: Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60(29–30), 3718–3722 (2006) Shi, F., Wang, L., Liu, J.: Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater. Lett. 60(29–30), 3718–3722 (2006)
69.
go back to reference Smitha, S., Shajesh, P., Warrier, K.G.K.: Investigations on the effect of experimental parameters on the porosity features of silica aerogels synthesized at ambient drying conditions. Mater. Chem. Phys. 131(1–2), 507–511 (2011) Smitha, S., Shajesh, P., Warrier, K.G.K.: Investigations on the effect of experimental parameters on the porosity features of silica aerogels synthesized at ambient drying conditions. Mater. Chem. Phys. 131(1–2), 507–511 (2011)
70.
go back to reference Land, V.D., Harris, T.M., Teeters, D.C.: Processing of low-density silica gel by critical point drying or ambient pressure drying. J. Non-Cryst. Solids 283(1), 11–17 (2001) Land, V.D., Harris, T.M., Teeters, D.C.: Processing of low-density silica gel by critical point drying or ambient pressure drying. J. Non-Cryst. Solids 283(1), 11–17 (2001)
71.
go back to reference Shlyakhtin, O., Tretyakov, Y.: Recent progress in cryochemical synthesis of oxide materials. J. Mater. Chem. 9(1), 19–24 (1999) Shlyakhtin, O., Tretyakov, Y.: Recent progress in cryochemical synthesis of oxide materials. J. Mater. Chem. 9(1), 19–24 (1999)
72.
go back to reference Wu, G., Yu, Y., Cheng, X., Zhang, Y.: Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater. Chem. Phys. 129(1–2), 308–314 (2011) Wu, G., Yu, Y., Cheng, X., Zhang, Y.: Preparation and surface modification mechanism of silica aerogels via ambient pressure drying. Mater. Chem. Phys. 129(1–2), 308–314 (2011)
73.
go back to reference Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P., Seth, T.: Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl. Surf. Sci. 206(1–4), 262–270 (2003) Rao, A.V., Kulkarni, M.M., Amalnerkar, D.P., Seth, T.: Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl. Surf. Sci. 206(1–4), 262–270 (2003)
74.
go back to reference Rao, A.P., Rao, A.V., Pajonk, G.M.: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl. Surf. Sci. 253(14), 6032–6040 (2007) Rao, A.P., Rao, A.V., Pajonk, G.M.: Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl. Surf. Sci. 253(14), 6032–6040 (2007)
75.
go back to reference Kistler, S.S.: Method of producing aerogels. US Patent 2,093,454 (1937) Kistler, S.S.: Method of producing aerogels. US Patent 2,093,454 (1937)
76.
go back to reference Ackerman, W.C., Vlachos, M., Rouanet, S., Fruendt, J.: Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J. Non-Cryst. Solids 285(1–3), 264–271 (2001) Ackerman, W.C., Vlachos, M., Rouanet, S., Fruendt, J.: Use of surface treated aerogels derived from various silica precursors in translucent insulation panels. J. Non-Cryst. Solids 285(1–3), 264–271 (2001)
77.
go back to reference Rao, A.P., Rao, A.V.: Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. J. Non-Cryst. Solids 354(1), 10–18 (2008) Rao, A.P., Rao, A.V.: Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. J. Non-Cryst. Solids 354(1), 10–18 (2008)
78.
go back to reference Deshpande, R., Hua, D.-W., Smith, D.M., Brinker, C.J.: Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension. J. Non-Cryst. Solids 144, 32–44 (1992) Deshpande, R., Hua, D.-W., Smith, D.M., Brinker, C.J.: Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension. J. Non-Cryst. Solids 144, 32–44 (1992)
79.
go back to reference Kumar, S.R., Pillai, P.K., Warrier, K.: Synthesis of high surface area silica by solvent exchange in alkoxy derived silica gels. Polyhedron. 17(10), 1699–1703 (1998) Kumar, S.R., Pillai, P.K., Warrier, K.: Synthesis of high surface area silica by solvent exchange in alkoxy derived silica gels. Polyhedron. 17(10), 1699–1703 (1998)
80.
go back to reference Wang, L.-J., Zhao, S.-Y., Yang, M.: Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113(1), 485–490 (2009) Wang, L.-J., Zhao, S.-Y., Yang, M.: Structural characteristics and thermal conductivity of ambient pressure dried silica aerogels with one-step solvent exchange/surface modification. Mater. Chem. Phys. 113(1), 485–490 (2009)
81.
go back to reference Bhagat, S.D., Kim, Y.-H., Suh, K.-H., Ahn, Y.-S., Yeo, J.-G., Han, J.-H.: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels. Microporous Mesoporous Mater. 112(1), 504–509 (2008) Bhagat, S.D., Kim, Y.-H., Suh, K.-H., Ahn, Y.-S., Yeo, J.-G., Han, J.-H.: Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels. Microporous Mesoporous Mater. 112(1), 504–509 (2008)
Metadata
Title
An Introduction to Sol-Gel Processing for Aerogels
Authors
Saoirse Dervin
Suresh C. Pillai
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50144-4_1

Premium Partners