Skip to main content
Top

2017 | OriginalPaper | Chapter

2. Sol-Gel Materials for Varistor Devices

Authors : S. Anas, K. V. Mahesh, M. Jeen Maria, S. Ananthakumar

Published in: Sol-Gel Materials for Energy, Environment and Electronic Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The present chapter deals with a systematic report on ‘sol-gel ZnO varistors’, an area which needs to be much explored in terms of the applications it holds. The book chapter starts with a brief introduction on varistors. Subsequently, a detailed description on the so far adopted conventional preparation methods and chemical synthesis strategies for varistors are presented. Among the many chemical methods, the advantages of employing a sol-gel method for varistor technology are discussed in detail in later sections. A detailed literature survey on the preparation, properties and advantages of sol-gel derived ZnO varistors is provided. The main focus of the study is to highlight the importance of nanoinclusions for high-performance varistors in terms of controlled grain size, improved grain boundary area and homogeneous dopant distribution at the grain boundaries. The chapter concludes with a discussion on the recent research interests on the sol-gel ceramic–polymer varistors and studies on varistor-epoxy, ZnO-PANI, ZnO-PANI-PVA, GaAs-PANI-PE, Si–Polymer varistor composites.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Matsuoka, M.: Nonohmic properties of ZnO ceramics. Jpn. J. Appl. Phys. 10, 736–746 (1971)CrossRef Matsuoka, M.: Nonohmic properties of ZnO ceramics. Jpn. J. Appl. Phys. 10, 736–746 (1971)CrossRef
2.
go back to reference Levine, J.D.: Theory of varistor electronic properties. Crit. Rev. Solid State Mater. Sci. 5, 597–608 (1975)CrossRef Levine, J.D.: Theory of varistor electronic properties. Crit. Rev. Solid State Mater. Sci. 5, 597–608 (1975)CrossRef
3.
go back to reference Mahan, G.D., Levinson, L.M., Philipp, H.R.: Theory of conduction in ZnO varistors. J. Appl. Phys. 50, 2799–2812 (1979)CrossRef Mahan, G.D., Levinson, L.M., Philipp, H.R.: Theory of conduction in ZnO varistors. J. Appl. Phys. 50, 2799–2812 (1979)CrossRef
4.
go back to reference Levinson, L.M., Philipp, H.R.: Zinc Oxide varistors-a review. Am. Ceram. Soc. Bull. 65, 639–646 (1986) Levinson, L.M., Philipp, H.R.: Zinc Oxide varistors-a review. Am. Ceram. Soc. Bull. 65, 639–646 (1986)
5.
go back to reference Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: High performance ZnO varistors prepared from nanocrystalline precursors for miniaturised electronic devices. J. Mater. Chem. 18, 3926–3932 (2008)CrossRef Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: High performance ZnO varistors prepared from nanocrystalline precursors for miniaturised electronic devices. J. Mater. Chem. 18, 3926–3932 (2008)CrossRef
6.
go back to reference Bok-Hee, L., Sung-Man, K.: Properties of ZnO varistor blocks under multiple lightning impulse voltages. Curr. Appl. Phys. 6, 844–851 (2006)CrossRef Bok-Hee, L., Sung-Man, K.: Properties of ZnO varistor blocks under multiple lightning impulse voltages. Curr. Appl. Phys. 6, 844–851 (2006)CrossRef
7.
8.
go back to reference Gupta, T.K.: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)CrossRef Gupta, T.K.: Application of zinc oxide varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)CrossRef
9.
go back to reference Pillai, S.C., Kelly, J.M., Ramesh, R., et al.: Advances in the synthesis of ZnO nanomaterials for varistor devices. J. Mater. Chem. C 1, 3268–3281 (2013)CrossRef Pillai, S.C., Kelly, J.M., Ramesh, R., et al.: Advances in the synthesis of ZnO nanomaterials for varistor devices. J. Mater. Chem. C 1, 3268–3281 (2013)CrossRef
10.
go back to reference Duran, P., Capel, F., Tartaj, J., et al.: A Strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors. Adv. Mater. 14, 137–141 (2002)CrossRef Duran, P., Capel, F., Tartaj, J., et al.: A Strategic two-stage low-temperature thermal processing leading to fully dense and fine-grained doped-ZnO varistors. Adv. Mater. 14, 137–141 (2002)CrossRef
11.
go back to reference Ezhilvalavan, S., Kutty, T.R.N.: Low-voltage varistors based on zinc antimony spinel Zn-Sb-O. Appl. Phys. Lett. 68, 2693–2695 (1996)CrossRef Ezhilvalavan, S., Kutty, T.R.N.: Low-voltage varistors based on zinc antimony spinel Zn-Sb-O. Appl. Phys. Lett. 68, 2693–2695 (1996)CrossRef
12.
go back to reference Clarke, D.R.: The microstructural location of the intergranular metal oxide phase in a zinc oxide varistor. J. Appl. Phys. 49(4), 2407–2411 (1978)CrossRef Clarke, D.R.: The microstructural location of the intergranular metal oxide phase in a zinc oxide varistor. J. Appl. Phys. 49(4), 2407–2411 (1978)CrossRef
13.
go back to reference Kingery, W.D.: Distribution and influence of minor constituents on ceramic formulations. Mater. Sci. Res. 21, 281–294 (1986) Kingery, W.D.: Distribution and influence of minor constituents on ceramic formulations. Mater. Sci. Res. 21, 281–294 (1986)
14.
go back to reference Alim, M.A., Li, S., Liu, F., et al.: Electrical barriers in the ZnO varistor grain boundaries. Phys. Stat. Sol. 203, 410–427 (2006)CrossRef Alim, M.A., Li, S., Liu, F., et al.: Electrical barriers in the ZnO varistor grain boundaries. Phys. Stat. Sol. 203, 410–427 (2006)CrossRef
15.
go back to reference Clarke, D.R.: Grain boundary segregation in a commercial ZnO-based varistor. J. Appl. Phys. 50(11), 6829–6832 (1979)CrossRef Clarke, D.R.: Grain boundary segregation in a commercial ZnO-based varistor. J. Appl. Phys. 50(11), 6829–6832 (1979)CrossRef
16.
go back to reference Anas, S., Mangalaraja, R.V., Mukundan, P., et al.: Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique. Acta Mater. 55, 5792–5801 (2007)CrossRef Anas, S., Mangalaraja, R.V., Mukundan, P., et al.: Direct synthesis of varistor-grade doped nanocrystalline ZnO and its densification through a step-sintering technique. Acta Mater. 55, 5792–5801 (2007)CrossRef
17.
go back to reference Dienel, H.F.: Silicon carbide varistors: properties and construction. Bell Lab. Rec. 34, 407 (1956) Dienel, H.F.: Silicon carbide varistors: properties and construction. Bell Lab. Rec. 34, 407 (1956)
18.
go back to reference Frosch, C.J.: Improved silicon carbide varistors. Bell Lab. Rec. 32, 336–340 (1954) Frosch, C.J.: Improved silicon carbide varistors. Bell Lab. Rec. 32, 336–340 (1954)
19.
go back to reference Hsiang, H.-I., Wang, S.-S.: Cooling rate effects on the electrical properties of TiO2-based varistor. Mater. Sci. Eng. B 128, 25–29 (2006)CrossRef Hsiang, H.-I., Wang, S.-S.: Cooling rate effects on the electrical properties of TiO2-based varistor. Mater. Sci. Eng. B 128, 25–29 (2006)CrossRef
20.
go back to reference Nakano, Y., Ichinose, N.: Oxygen adsorption and VDR effect in (Sr, Ca) TiO-based ceramics. J. Mater. Res. 5, 2910–2921 (1990)CrossRef Nakano, Y., Ichinose, N.: Oxygen adsorption and VDR effect in (Sr, Ca) TiO-based ceramics. J. Mater. Res. 5, 2910–2921 (1990)CrossRef
21.
go back to reference Brankovic, Z., Brankovic, Bernik S., et al.: ZnO varistors with reduced amount of additives prepared by direct mixing of constituent phases. J. Eur. Ceram. Soc. 27, 1101–1104 (2006)CrossRef Brankovic, Z., Brankovic, Bernik S., et al.: ZnO varistors with reduced amount of additives prepared by direct mixing of constituent phases. J. Eur. Ceram. Soc. 27, 1101–1104 (2006)CrossRef
22.
go back to reference Sedky, A., Abu-Abdeen, M., Almulhem, A.A.: Nonlinear I–V characteristics in doped ZnO based-ceramic varistor. Phys. B 388, 266–273 (2006)CrossRef Sedky, A., Abu-Abdeen, M., Almulhem, A.A.: Nonlinear I–V characteristics in doped ZnO based-ceramic varistor. Phys. B 388, 266–273 (2006)CrossRef
23.
go back to reference Mukae, K.: Zinc oxide varistors with praseodymium oxide. Am. Ceram. Soc. Bull. 66, 1329–1331 (1987) Mukae, K.: Zinc oxide varistors with praseodymium oxide. Am. Ceram. Soc. Bull. 66, 1329–1331 (1987)
24.
go back to reference Takemura, T., Kobayashi, M., Takada, Y., et al.: Effects of bismuth sesquioxide on the characteristics of ZnO varistors. J. Am. Ceram. Soc. 69(5), 430–436 (1986)CrossRef Takemura, T., Kobayashi, M., Takada, Y., et al.: Effects of bismuth sesquioxide on the characteristics of ZnO varistors. J. Am. Ceram. Soc. 69(5), 430–436 (1986)CrossRef
25.
go back to reference Onreabroy, W., Sirikulrat, N., Brown, A.P., et al.: Properties and intergranular phase analysis of a ZnO–CoO–Bi2O3 varistor. Solid State Ionics 177, 411–420 (2006)CrossRef Onreabroy, W., Sirikulrat, N., Brown, A.P., et al.: Properties and intergranular phase analysis of a ZnO–CoO–Bi2O3 varistor. Solid State Ionics 177, 411–420 (2006)CrossRef
26.
go back to reference Pillai, S.C., Kelly, J.M., McCormack, D.E.: Self-assembled arrays of ZnO nanoparticles and their application as varistor materials. J. Mater. Chem. 14, 1572–1578. Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: Microstructural analysis of varistors prepared from nanosize ZnO. Mater. Sci. Tech. Ser. 20, 964–968 (2004) Pillai, S.C., Kelly, J.M., McCormack, D.E.: Self-assembled arrays of ZnO nanoparticles and their application as varistor materials. J. Mater. Chem. 14, 1572–1578. Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: Microstructural analysis of varistors prepared from nanosize ZnO. Mater. Sci. Tech. Ser. 20, 964–968 (2004)
27.
go back to reference Gardner, T.J., Doughty, D.H., Lockwood, S.J., et al.: The effect of low level dopants on chemically prepared varistor materials. Ceram. Trans. 3, 84–92 (1989) Gardner, T.J., Doughty, D.H., Lockwood, S.J., et al.: The effect of low level dopants on chemically prepared varistor materials. Ceram. Trans. 3, 84–92 (1989)
28.
go back to reference Kingery, W.D.: Densification during sintering in the presence of a liquid phase I. Theory and II. Experimental. J. Appl. Phys. 30(3), 301–310 (1959)CrossRef Kingery, W.D.: Densification during sintering in the presence of a liquid phase I. Theory and II. Experimental. J. Appl. Phys. 30(3), 301–310 (1959)CrossRef
29.
go back to reference Shaw, T.M.: Liquid redistribution during liquid-phase sintering. J. Am. Ceram. Soc. 69(1), 27–34 (1986)CrossRef Shaw, T.M.: Liquid redistribution during liquid-phase sintering. J. Am. Ceram. Soc. 69(1), 27–34 (1986)CrossRef
30.
go back to reference Senda, T., Bradt, R.C.: Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 73, 106–114 (1990)CrossRef Senda, T., Bradt, R.C.: Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 73, 106–114 (1990)CrossRef
31.
go back to reference Fan, J., Sale, F.R.: Citrate gel route processing of ZnO varistors. Br Ceram Proc 52, 151–157 (1994) Fan, J., Sale, F.R.: Citrate gel route processing of ZnO varistors. Br Ceram Proc 52, 151–157 (1994)
32.
go back to reference Lihong, C., Guorong, L., Liaoying, Z., et al.: Analysis of high-voltage ZnO varistor prepared from a novel chemically aided method. J. Am. Ceram. Soc. 93, 2522–2525 (2010)CrossRef Lihong, C., Guorong, L., Liaoying, Z., et al.: Analysis of high-voltage ZnO varistor prepared from a novel chemically aided method. J. Am. Ceram. Soc. 93, 2522–2525 (2010)CrossRef
33.
go back to reference Sonder, E., Quinby, T.C., Kinser, D.L.: ZnO varistor made from powders produced using a urea process. Am. Ceram. Soc. Bull. 65(4), 665–668 (1986) Sonder, E., Quinby, T.C., Kinser, D.L.: ZnO varistor made from powders produced using a urea process. Am. Ceram. Soc. Bull. 65(4), 665–668 (1986)
34.
go back to reference Yuke, L., Guorong, L., Qingrui, Y., et al.: Preparation of ZnO varistors by solution nano-coating technique. Mat. Sci. Eng. B 130, 264–268 (2006)CrossRef Yuke, L., Guorong, L., Qingrui, Y., et al.: Preparation of ZnO varistors by solution nano-coating technique. Mat. Sci. Eng. B 130, 264–268 (2006)CrossRef
35.
go back to reference Wang, Q., Qin, Y., Xu, G.J., et al.: Low-voltage ZnO varistor fabricated by the solution-coating method. Ceram. Int. 34, 1697–1701 (2008)CrossRef Wang, Q., Qin, Y., Xu, G.J., et al.: Low-voltage ZnO varistor fabricated by the solution-coating method. Ceram. Int. 34, 1697–1701 (2008)CrossRef
36.
go back to reference Duran, P., Capel, F., Tartaj, J., et al.: Sintering behavior and electrical properties of nanosized doped-ZnO powders produced by Metallorganic Polymeric Processing. J. Am. Ceram. Soc. 84, 1661–1668 (2001)CrossRef Duran, P., Capel, F., Tartaj, J., et al.: Sintering behavior and electrical properties of nanosized doped-ZnO powders produced by Metallorganic Polymeric Processing. J. Am. Ceram. Soc. 84, 1661–1668 (2001)CrossRef
37.
go back to reference Hishita, S., Yao, Y., Shirasaki, S.-I.: Zinc oxide varistors made from powders prepared by amine processing. J. Am. Ceram. Soc. 77(2), 338–340 (1989)CrossRef Hishita, S., Yao, Y., Shirasaki, S.-I.: Zinc oxide varistors made from powders prepared by amine processing. J. Am. Ceram. Soc. 77(2), 338–340 (1989)CrossRef
38.
go back to reference Riahi-Noori, N., Sarraf-Mamoory, R., Alizadeh, P.: Synthesis of ZnO nano powder by a gel combustion method. J. Ceram. Process. Res. 9, 246–249 (2008) Riahi-Noori, N., Sarraf-Mamoory, R., Alizadeh, P.: Synthesis of ZnO nano powder by a gel combustion method. J. Ceram. Process. Res. 9, 246–249 (2008)
39.
go back to reference Banerjee, A., Ramamohan, T.R., Patni, M.J.: Smart technique for fabrication of Zinc Oxide varistor. Mater. Res. Bull. 36, 1259–1267 (2001)CrossRef Banerjee, A., Ramamohan, T.R., Patni, M.J.: Smart technique for fabrication of Zinc Oxide varistor. Mater. Res. Bull. 36, 1259–1267 (2001)CrossRef
40.
go back to reference Lorenz, A., Ott, J., Harrer, M., et al.: Modified citrate gel routes to ZnO-based varistors. J. Eur. Ceram. Soc. 21, 1887–1891 (2001)CrossRef Lorenz, A., Ott, J., Harrer, M., et al.: Modified citrate gel routes to ZnO-based varistors. J. Eur. Ceram. Soc. 21, 1887–1891 (2001)CrossRef
41.
go back to reference Sinha, A., Sharma, B.P.: Novel route for preparation of high voltage varistor powder. Mater. Res. Bull. 32, 1571–1579 (1997)CrossRef Sinha, A., Sharma, B.P.: Novel route for preparation of high voltage varistor powder. Mater. Res. Bull. 32, 1571–1579 (1997)CrossRef
42.
go back to reference Hingorani, S., Shah, D.O., Multani, M.S.: Effect of process variables on the grain growth and microstructure of ZnO–Bi2O3 varistors and their nanosize ZnO precursors. J. Mater. Res. 10, 461–467 (1995)CrossRef Hingorani, S., Shah, D.O., Multani, M.S.: Effect of process variables on the grain growth and microstructure of ZnO–Bi2O3 varistors and their nanosize ZnO precursors. J. Mater. Res. 10, 461–467 (1995)CrossRef
43.
go back to reference Haile, S.M., Johnson Jr., D.W., Wiseman, G.H., et al.: Aqueous precipitation of spherical ZnO powders for varistor applications. J. Am. Ceram. Soc. 72, 2004–2008 (1989)CrossRef Haile, S.M., Johnson Jr., D.W., Wiseman, G.H., et al.: Aqueous precipitation of spherical ZnO powders for varistor applications. J. Am. Ceram. Soc. 72, 2004–2008 (1989)CrossRef
44.
go back to reference Li, Y., Li, G., Yin, Q.: Preparation of ZnO varistors by solution nano-coating technique. Mater. Sci. Eng. B 130, 264–268 (2006)CrossRef Li, Y., Li, G., Yin, Q.: Preparation of ZnO varistors by solution nano-coating technique. Mater. Sci. Eng. B 130, 264–268 (2006)CrossRef
45.
go back to reference Nobrega, M.C.S., Zolotar, M.S., Mannheimer, W.A., et al.: ZnO varistors produced using colloidal-gel powders. J. Non-Cryst. Solids 147–148, 803–807 (1992)CrossRef Nobrega, M.C.S., Zolotar, M.S., Mannheimer, W.A., et al.: ZnO varistors produced using colloidal-gel powders. J. Non-Cryst. Solids 147–148, 803–807 (1992)CrossRef
46.
go back to reference Viswanath, R.N., Ramasamy, S., Ramamoorthy, R., et al.: Preparation and characterization of nanocrystalline ZnO based materials for varistor applications. Nanostruct. Mater. 6, 993–996 (1995)CrossRef Viswanath, R.N., Ramasamy, S., Ramamoorthy, R., et al.: Preparation and characterization of nanocrystalline ZnO based materials for varistor applications. Nanostruct. Mater. 6, 993–996 (1995)CrossRef
47.
go back to reference Varma, H.K., Ananthakumar, S., Perumal, P., et al.: Microwave processing of ZnO varistor. Ceram. Trans. 36, 115 (1993) Varma, H.K., Ananthakumar, S., Perumal, P., et al.: Microwave processing of ZnO varistor. Ceram. Trans. 36, 115 (1993)
48.
go back to reference Varma, H.K., Ananthakumar, S., Warrier, K.G.K., et al.: Synthesis of zinc oxide varistors through microwave-derived precursor. Ceram. Int. 22, 53–56 (1996)CrossRef Varma, H.K., Ananthakumar, S., Warrier, K.G.K., et al.: Synthesis of zinc oxide varistors through microwave-derived precursor. Ceram. Int. 22, 53–56 (1996)CrossRef
49.
go back to reference Anas, S., Metz, R., Sanoj, M.A., et al.: Sintering of surfactant modified ZnO–Bi2O3 based varistor nanopowders. Ceram. Int. 36, 2351–2358 (2010)CrossRef Anas, S., Metz, R., Sanoj, M.A., et al.: Sintering of surfactant modified ZnO–Bi2O3 based varistor nanopowders. Ceram. Int. 36, 2351–2358 (2010)CrossRef
50.
go back to reference Anas, S., Mukundan, P., Sanoj, M.A., et al.: Synthesis of ZnO based nanopowders via a non-hydrolytic sol gel technique and their densification behaviour and varistor properties. Proc. Appl. Ceram. 4, 7–14 (2010)CrossRef Anas, S., Mukundan, P., Sanoj, M.A., et al.: Synthesis of ZnO based nanopowders via a non-hydrolytic sol gel technique and their densification behaviour and varistor properties. Proc. Appl. Ceram. 4, 7–14 (2010)CrossRef
51.
go back to reference Macary, L.S., Kahn, M.L., Estournes, C.: Size effect on properties of varistors made from Zinc Oxide nanoparticles through low temperature spark plasma sintering. Adv. Funct. Mater. 19, 1775–1783 (2009)CrossRef Macary, L.S., Kahn, M.L., Estournes, C.: Size effect on properties of varistors made from Zinc Oxide nanoparticles through low temperature spark plasma sintering. Adv. Funct. Mater. 19, 1775–1783 (2009)CrossRef
52.
go back to reference Bidadi, H., Aref, S.M., Ghafouri, M., et al.: Effect of changing Gallium arsenide content on Gallium arsenide–polymer composite varistors. J. Phys. Chem. Solids 74, 1169–1173 (2013)CrossRef Bidadi, H., Aref, S.M., Ghafouri, M., et al.: Effect of changing Gallium arsenide content on Gallium arsenide–polymer composite varistors. J. Phys. Chem. Solids 74, 1169–1173 (2013)CrossRef
53.
go back to reference Bidadi, H., Aref, S.M., Ghafouri, M., et al.: The effect of sintering temperature on varistor characteristics of galliumarsenide–polyaniline–polyethylene composite varistors. Mat. Sci. Semicon. Proc. 16, 752–758 (2013)CrossRef Bidadi, H., Aref, S.M., Ghafouri, M., et al.: The effect of sintering temperature on varistor characteristics of galliumarsenide–polyaniline–polyethylene composite varistors. Mat. Sci. Semicon. Proc. 16, 752–758 (2013)CrossRef
54.
go back to reference Bidadi, H., Olad, A., Parhizkar, M., et al.: Nonlinear properties of ZnO-polymer composites prepared by solution-casting method. Vacuum 87, 50–54 (2013)CrossRef Bidadi, H., Olad, A., Parhizkar, M., et al.: Nonlinear properties of ZnO-polymer composites prepared by solution-casting method. Vacuum 87, 50–54 (2013)CrossRef
55.
go back to reference Hashimov, A.M., Hasanli, S.M., Mehtizadeh, R.N., et al.: Zinc oxide-and polymer-based composite varistors. Phys. Stat. Sol. C. 3, 2871–2875 (2006)CrossRef Hashimov, A.M., Hasanli, S.M., Mehtizadeh, R.N., et al.: Zinc oxide-and polymer-based composite varistors. Phys. Stat. Sol. C. 3, 2871–2875 (2006)CrossRef
56.
go back to reference Lin, C.-C., Lee, W.-S., Sun, C.-C., et al.: A varistor–polymer composite with nonlinear electrical-thermal switching properties. Ceram. Int. 34, 131–136 (2008)CrossRef Lin, C.-C., Lee, W.-S., Sun, C.-C., et al.: A varistor–polymer composite with nonlinear electrical-thermal switching properties. Ceram. Int. 34, 131–136 (2008)CrossRef
57.
go back to reference Lanyi, W., Guoyi, T., Zheng-Kui, X., et al.: Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting. Ceram. Int. 35, 487–492 (2009)CrossRef Lanyi, W., Guoyi, T., Zheng-Kui, X., et al.: Preparation and electrical properties of multilayer ZnO varistors with water-based tape casting. Ceram. Int. 35, 487–492 (2009)CrossRef
58.
go back to reference Maria, M.J., Balanand, S., Anas, S., et al.: Zn-dust derived ultrafine grained ZnO non-linear ceramic resistors via in-situ thermal oxidation of cermet reactant mixture. Mater. Des. 92, 387–396 (2016) Maria, M.J., Balanand, S., Anas, S., et al.: Zn-dust derived ultrafine grained ZnO non-linear ceramic resistors via in-situ thermal oxidation of cermet reactant mixture. Mater. Des. 92, 387–396 (2016)
59.
go back to reference Suvaci, E., Ozgur, I.O.: Processing of textured zinc oxide varistors via templated grain growth. J. Euro. Ceram. Soc. 25, 1663–1673 (2005)CrossRef Suvaci, E., Ozgur, I.O.: Processing of textured zinc oxide varistors via templated grain growth. J. Euro. Ceram. Soc. 25, 1663–1673 (2005)CrossRef
60.
go back to reference Rahul, S.P., Mahesh, K.V., Sujith, S.S., et al.: Processing of La2O3 based rare earth non-linear resistors via combustion synthesis. J. Electroceram. 32, 292–300 (2014)CrossRef Rahul, S.P., Mahesh, K.V., Sujith, S.S., et al.: Processing of La2O3 based rare earth non-linear resistors via combustion synthesis. J. Electroceram. 32, 292–300 (2014)CrossRef
61.
go back to reference Cheng, L.H., Zheng, L.Y., Meng, L., et al.: Electrical properties of Al2O3-doped ZnO varistors prepared by sol–gel process for device miniaturization. Ceram. Int. 38S, S457–S461 (2012)CrossRef Cheng, L.H., Zheng, L.Y., Meng, L., et al.: Electrical properties of Al2O3-doped ZnO varistors prepared by sol–gel process for device miniaturization. Ceram. Int. 38S, S457–S461 (2012)CrossRef
62.
go back to reference Dong, X., Bin, J., Lei, J., et al.: Sol-gel synthesis of Y2O3-doped ZnO thin films varistors and their electrical properties. Trans. Nonferrous Met. Soc. China 22, 110–114 (2012)CrossRef Dong, X., Bin, J., Lei, J., et al.: Sol-gel synthesis of Y2O3-doped ZnO thin films varistors and their electrical properties. Trans. Nonferrous Met. Soc. China 22, 110–114 (2012)CrossRef
63.
go back to reference Gert, H., Gerhard, T.: Sol-gel processing of varistor powders. J. Mater. Res. 7, 546–548 (1992)CrossRef Gert, H., Gerhard, T.: Sol-gel processing of varistor powders. J. Mater. Res. 7, 546–548 (1992)CrossRef
64.
go back to reference Hohenberger, G., Tomandl, G.: Sol-gel processing of varistor powders. J. Mater. Res. 7(3), 546–548 (1992)CrossRef Hohenberger, G., Tomandl, G.: Sol-gel processing of varistor powders. J. Mater. Res. 7(3), 546–548 (1992)CrossRef
65.
go back to reference Huang, Y.Q., Meidong, L., Yike, Z., et al.: Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 86(3), 232–236 (2001)CrossRef Huang, Y.Q., Meidong, L., Yike, Z., et al.: Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 86(3), 232–236 (2001)CrossRef
66.
go back to reference Jincang, Z., Shixun, C., Ruiying, Z., et al.: Effect of fabrication conditions on I–V properties for ZnO varistor with high concentration additives by sol–gel technique. Current Appl. Phys. 5, 381–386 (2005)CrossRef Jincang, Z., Shixun, C., Ruiying, Z., et al.: Effect of fabrication conditions on I–V properties for ZnO varistor with high concentration additives by sol–gel technique. Current Appl. Phys. 5, 381–386 (2005)CrossRef
67.
go back to reference Lauf, R.J., Bond, W.D.: Fabrication of high-field zinc oxide varistors by sol–gel processing. Am. Ceram. Soc. Bull. 63(2), 278–281 (1984) Lauf, R.J., Bond, W.D.: Fabrication of high-field zinc oxide varistors by sol–gel processing. Am. Ceram. Soc. Bull. 63(2), 278–281 (1984)
68.
go back to reference Liu, T.-T., Wang, M.-H., Zhang, H.-P., et al.: Sol–gel synthesis of doped nanocrystalline ZnO powders using xanthan gum and varistor properties study. J. Mater. Sci.: Mater. Electron. 26, 9056–9062 (2015) Liu, T.-T., Wang, M.-H., Zhang, H.-P., et al.: Sol–gel synthesis of doped nanocrystalline ZnO powders using xanthan gum and varistor properties study. J. Mater. Sci.: Mater. Electron. 26, 9056–9062 (2015)
69.
go back to reference Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: The effect of processing conditions on varistors prepared from nanocrystalline ZnO. J. Mater. Chem. 13, 2586–2590 (2003)CrossRef Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: The effect of processing conditions on varistors prepared from nanocrystalline ZnO. J. Mater. Chem. 13, 2586–2590 (2003)CrossRef
70.
go back to reference Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: Effect of step sintering on breakdown voltage of varistors prepared from nanomaterials by sol gel route. Adv. Appl. Ceram. 105, 158–160 (2006)CrossRef Pillai, S.C., Kelly, J.M., McCormack, D.E., et al.: Effect of step sintering on breakdown voltage of varistors prepared from nanomaterials by sol gel route. Adv. Appl. Ceram. 105, 158–160 (2006)CrossRef
71.
go back to reference Puyane, R., Toal, F., Hampshire, S.: Production of doped ZnO powders for varistor applications using sol-gel techniques. J. Sol-Gel. Sci. Technol. 6, 219–225 (1996)CrossRef Puyane, R., Toal, F., Hampshire, S.: Production of doped ZnO powders for varistor applications using sol-gel techniques. J. Sol-Gel. Sci. Technol. 6, 219–225 (1996)CrossRef
72.
go back to reference Puyane, R., Guy, I., Metz, R.: High performance varistor discs obtained from chemically synthesized doped Zinc Oxide powder. J. Sol-Gel. Sci. Technol. 13, 575–578 (1998)CrossRef Puyane, R., Guy, I., Metz, R.: High performance varistor discs obtained from chemically synthesized doped Zinc Oxide powder. J. Sol-Gel. Sci. Technol. 13, 575–578 (1998)CrossRef
73.
go back to reference Westin, G., Ekstrand, A., Nygren, M., et al.: Preparation of ZnO-based varistors by the sol–gel technique. J. Mater. Chem. 4, 615–621 (1994)CrossRef Westin, G., Ekstrand, A., Nygren, M., et al.: Preparation of ZnO-based varistors by the sol–gel technique. J. Mater. Chem. 4, 615–621 (1994)CrossRef
74.
go back to reference Xu, D., Jiang, B., Jiao, L., et al.: Sol-gel synthesis of Y2O3-doped ZnO thin films varistors and their electrical properties. Trans. Nonferrous. Mat. Soc. China 22, 110–114 (2012)CrossRef Xu, D., Jiang, B., Jiao, L., et al.: Sol-gel synthesis of Y2O3-doped ZnO thin films varistors and their electrical properties. Trans. Nonferrous. Mat. Soc. China 22, 110–114 (2012)CrossRef
75.
go back to reference Ya, K.X., Diao, W.T., Yin, H., et al.: Sol-gel process doped ZnO nanopowders and their grain growth. Mater. Res. Bull. 32, 1165–1171 (1997)CrossRef Ya, K.X., Diao, W.T., Yin, H., et al.: Sol-gel process doped ZnO nanopowders and their grain growth. Mater. Res. Bull. 32, 1165–1171 (1997)CrossRef
76.
go back to reference Yanqiu, Q.H., Liu, M., Zeng, Y., et al.: Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process. Mater. Sci. Eng., B 86, 232–236 (2001)CrossRef Yanqiu, Q.H., Liu, M., Zeng, Y., et al.: Preparation and properties of ZnO-based ceramic films for low-voltage varistors by novel sol-gel process. Mater. Sci. Eng., B 86, 232–236 (2001)CrossRef
77.
go back to reference Wang, M.-H., Zhao, Z.-Y., Liu, T.-T.: Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study. J. Alloys Comp. 621, 220–224 (2015)CrossRef Wang, M.-H., Zhao, Z.-Y., Liu, T.-T.: Synthesis of Pr-doped ZnO nanoparticles by sol–gel method and varistor properties study. J. Alloys Comp. 621, 220–224 (2015)CrossRef
78.
go back to reference Zhang, J., Cao, S., Zhang, R., et al.: Effect of fabrication conditions on I–V properties for ZnO varistor with high concentration additives by sol–gel technique. Curr. Appl. Phys. 5, 381–386 (2005)CrossRef Zhang, J., Cao, S., Zhang, R., et al.: Effect of fabrication conditions on I–V properties for ZnO varistor with high concentration additives by sol–gel technique. Curr. Appl. Phys. 5, 381–386 (2005)CrossRef
79.
go back to reference Ozgur, U., Alivov, Y.I., Liu, C., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2015)CrossRef Ozgur, U., Alivov, Y.I., Liu, C., et al.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2015)CrossRef
80.
go back to reference Lee, W.-H., Chen, W.-T., Lee, Y.-C.: Performance enhancement of ZnO-based multilayer varistor by constrained sintering. J. Am. Ceram. Soc. 91, 2938–2942 (2008)CrossRef Lee, W.-H., Chen, W.-T., Lee, Y.-C.: Performance enhancement of ZnO-based multilayer varistor by constrained sintering. J. Am. Ceram. Soc. 91, 2938–2942 (2008)CrossRef
81.
go back to reference Jianzhang, S., Quanxi, C., Yunge, W., et al.: ZnO varistor manufactured by composite nano-additives. Mat. Sci. Eng. B 99, 344–347 (2003)CrossRef Jianzhang, S., Quanxi, C., Yunge, W., et al.: ZnO varistor manufactured by composite nano-additives. Mat. Sci. Eng. B 99, 344–347 (2003)CrossRef
82.
go back to reference Mehdi, M., Zahedi, A.M., Sadrnezhaad, S.K.: Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. J. Am. Ceram. Soc. 91, 56–63 (2008) Mehdi, M., Zahedi, A.M., Sadrnezhaad, S.K.: Two-step sintering of nanocrystalline ZnO compacts: effect of temperature on densification and grain growth. J. Am. Ceram. Soc. 91, 56–63 (2008)
83.
go back to reference Subasri, R., Asha, M., Hembram, K., et al.: Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications. Mater. Chem. Phys. 115, 677–684 (2009)CrossRef Subasri, R., Asha, M., Hembram, K., et al.: Microwave sintering of doped nanocrystalline ZnO and characterization for varistor applications. Mater. Chem. Phys. 115, 677–684 (2009)CrossRef
84.
go back to reference Westin, G., Nygren, M.: Sol-gel preparation of M-Sb oxides from Sb (OBun)3-M- Acetate precursors with M = Mn Co, Ni. J. Mater. Chem. 3, 367–371 (1993)CrossRef Westin, G., Nygren, M.: Sol-gel preparation of M-Sb oxides from Sb (OBun)3-M- Acetate precursors with M = Mn Co, Ni. J. Mater. Chem. 3, 367–371 (1993)CrossRef
85.
go back to reference Ya, K.X., Yin, H., De, T.M., et al.: Analysis of ZnO varistors prep ared from nanosize ZnO precursors. Mater. Res. Bull. 33, 1703–1708 (1998)CrossRef Ya, K.X., Yin, H., De, T.M., et al.: Analysis of ZnO varistors prep ared from nanosize ZnO precursors. Mater. Res. Bull. 33, 1703–1708 (1998)CrossRef
86.
go back to reference Chu, S.-Y., Yan, T.-M., Chen, S.-L., et al.: Analysis of ZnO varistors prepared by the sol-gel method. Ceram. Int. 26, 733–737 (2000)CrossRef Chu, S.-Y., Yan, T.-M., Chen, S.-L., et al.: Analysis of ZnO varistors prepared by the sol-gel method. Ceram. Int. 26, 733–737 (2000)CrossRef
87.
go back to reference Anas, S., Mahesh, K.V., Jobin, V., et al.: Nanofillers in ZnO based materials: a ‘smart’ technique for developing miniaturized high energy field varistors. J. Mater. Chem. C. 1, 6455–6462 (2013)CrossRef Anas, S., Mahesh, K.V., Jobin, V., et al.: Nanofillers in ZnO based materials: a ‘smart’ technique for developing miniaturized high energy field varistors. J. Mater. Chem. C. 1, 6455–6462 (2013)CrossRef
88.
go back to reference Peiteado, M., Fernandez, J.F., Caballero, A.C.: Processing strategies to control grain growth in ZnO based varistors. J. Eur. Ceram. Soc. 25, 2999–3003 (2005)CrossRef Peiteado, M., Fernandez, J.F., Caballero, A.C.: Processing strategies to control grain growth in ZnO based varistors. J. Eur. Ceram. Soc. 25, 2999–3003 (2005)CrossRef
89.
go back to reference Peiteado, M., Fernandez, J.F., Caballero, A.C.: Varistors based in the ZnO–Bi2O3 system: microstructure control and properties. J. Eur. Ceram. Soc. 27, 3867–3872 (2007)CrossRef Peiteado, M., Fernandez, J.F., Caballero, A.C.: Varistors based in the ZnO–Bi2O3 system: microstructure control and properties. J. Eur. Ceram. Soc. 27, 3867–3872 (2007)CrossRef
90.
go back to reference Lee, W.-H., Chen, W.-T., Su, C.-Y.: Attaining a homogeneous microstructure of a ZnO-based multilayer varistor by constrained sintering. J. Am. Ceram. Soc. 90, 3296–3298 (2007)CrossRef Lee, W.-H., Chen, W.-T., Su, C.-Y.: Attaining a homogeneous microstructure of a ZnO-based multilayer varistor by constrained sintering. J. Am. Ceram. Soc. 90, 3296–3298 (2007)CrossRef
91.
go back to reference Cong, L., Zheng, X., Hu, P., et al.: Bi2O3 Vaporization in microwave-sintered ZnO varistors. J. Am. Ceram. Soc. 90(9), 2791–2794 (2007)CrossRef Cong, L., Zheng, X., Hu, P., et al.: Bi2O3 Vaporization in microwave-sintered ZnO varistors. J. Am. Ceram. Soc. 90(9), 2791–2794 (2007)CrossRef
92.
go back to reference Yuan, F., Ryu, H.: Microstructure of varistors prepared with zinc oxide nanoparticles coated with Bi2O3. J. Am. Ceram. Soc. 87, 736–738 (2004)CrossRef Yuan, F., Ryu, H.: Microstructure of varistors prepared with zinc oxide nanoparticles coated with Bi2O3. J. Am. Ceram. Soc. 87, 736–738 (2004)CrossRef
93.
go back to reference Aref, S.M., Olad, A., Parhizkar, M., et al.: Effect of polyaniline content on electrophysical properties of gallium arsenide polymer composite varistors. Solid State Sci. 26, 128–133 (2013)CrossRef Aref, S.M., Olad, A., Parhizkar, M., et al.: Effect of polyaniline content on electrophysical properties of gallium arsenide polymer composite varistors. Solid State Sci. 26, 128–133 (2013)CrossRef
94.
go back to reference Felix, J.F, da Silva Jr., E.F., de Vasconcelos, E.A., et al. Tailoring the electrical properties of ZnO/Polyaniline heterostructures for device applications. J Korean Phys. Soc. 58(5), 1256–1260 (2011) Felix, J.F, da Silva Jr., E.F., de Vasconcelos, E.A., et al. Tailoring the electrical properties of ZnO/Polyaniline heterostructures for device applications. J Korean Phys. Soc. 58(5), 1256–1260 (2011)
95.
go back to reference MacDiarmid, A.G., Epstein, A.J.: Poly anilines: a novel class of conducting polymers. Faraday Discuss Chem. Soc. 88, 317–332 (1989)CrossRef MacDiarmid, A.G., Epstein, A.J.: Poly anilines: a novel class of conducting polymers. Faraday Discuss Chem. Soc. 88, 317–332 (1989)CrossRef
96.
go back to reference MacDiarmid, A.G., Chiang, J.C., Richter, A.F.: Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)CrossRef MacDiarmid, A.G., Chiang, J.C., Richter, A.F.: Polyaniline: a new concept in conducting polymers. Synth. Met. 18, 285–290 (1987)CrossRef
97.
go back to reference Greuter, F., Siegrist, M., Kluge-Weiss, P., et al.: Microvaristors: functional fillers for novel electroceramic composites. J. Electroceram. 13, 739–744 (2004)CrossRef Greuter, F., Siegrist, M., Kluge-Weiss, P., et al.: Microvaristors: functional fillers for novel electroceramic composites. J. Electroceram. 13, 739–744 (2004)CrossRef
98.
go back to reference Ghafouri, M., Parhizkar, M., Aref, S.M., et al.: Effect of temperature on the electrophysical properties of Si–polymer composite varistors. Microelectron. Reliab. 54, 965–971 (2014)CrossRef Ghafouri, M., Parhizkar, M., Aref, S.M., et al.: Effect of temperature on the electrophysical properties of Si–polymer composite varistors. Microelectron. Reliab. 54, 965–971 (2014)CrossRef
99.
go back to reference Ghafouri, M., Parhizkar, M., Bidadi, H., et al.: Effect of Si content on electrophysical properties of Si-polymer composite varistors. Mater. Chem. Phys. 147, 1117–1122 (2014)CrossRef Ghafouri, M., Parhizkar, M., Bidadi, H., et al.: Effect of Si content on electrophysical properties of Si-polymer composite varistors. Mater. Chem. Phys. 147, 1117–1122 (2014)CrossRef
100.
go back to reference Daneu, N., Recnik, A., Bernik, S.: Grain growth control in Sb2O3-doped zinc oxide. J. Am. Ceram. Soc. 86, 1379–1384 (2003)CrossRef Daneu, N., Recnik, A., Bernik, S.: Grain growth control in Sb2O3-doped zinc oxide. J. Am. Ceram. Soc. 86, 1379–1384 (2003)CrossRef
101.
go back to reference Shi, J., Cao, Q., Wei, Y., et al.: ZnO varistor manufactured by composite nano additives. Mater. Sci. Eng. B 99, 344–347 (2003)CrossRef Shi, J., Cao, Q., Wei, Y., et al.: ZnO varistor manufactured by composite nano additives. Mater. Sci. Eng. B 99, 344–347 (2003)CrossRef
102.
go back to reference Yano, Y., Takai, Y., Morooka, H.: Interface states in ZnO varistors with Mn Co, and Cu impurities. J. Mater. Res. 9, 112–118 (1994)CrossRef Yano, Y., Takai, Y., Morooka, H.: Interface states in ZnO varistors with Mn Co, and Cu impurities. J. Mater. Res. 9, 112–118 (1994)CrossRef
103.
go back to reference Nahm, C.W.: Effect of sintering temperature on nonlinear electrical properties and stability against DC accelerated aging stress of (CoO, Cr2O3, La2O3)-doped ZnO–Pr6O11-based varistors. Mater. Lett. 60, 3311–3314 (2006)CrossRef Nahm, C.W.: Effect of sintering temperature on nonlinear electrical properties and stability against DC accelerated aging stress of (CoO, Cr2O3, La2O3)-doped ZnO–Pr6O11-based varistors. Mater. Lett. 60, 3311–3314 (2006)CrossRef
104.
go back to reference Wang, M.H., Hu, K.A., Zhao, B.Y., et al.: Electrical characteristics and stability of low voltage ZnO varistors doped with Al. Mater. Chem. Phys. 100, 142–146 (2006)CrossRef Wang, M.H., Hu, K.A., Zhao, B.Y., et al.: Electrical characteristics and stability of low voltage ZnO varistors doped with Al. Mater. Chem. Phys. 100, 142–146 (2006)CrossRef
105.
go back to reference Nahm, C.W., Shin, B.C.: Highly stable nonlinear properties of ZnO–Pr6O11–CoO– Cr2O3–Y2O3 based varistor ceramics. Mater. Lett. 57, 1322–1326 (2003)CrossRef Nahm, C.W., Shin, B.C.: Highly stable nonlinear properties of ZnO–Pr6O11–CoO– Cr2O3–Y2O3 based varistor ceramics. Mater. Lett. 57, 1322–1326 (2003)CrossRef
106.
go back to reference Binks, D.J., Grimes, R.W.: Incorporation of monovalent ions in ZnO and their influence on varistor degradation. J. Am. Ceram. Soc. 76, 2370–2372 (1993)CrossRef Binks, D.J., Grimes, R.W.: Incorporation of monovalent ions in ZnO and their influence on varistor degradation. J. Am. Ceram. Soc. 76, 2370–2372 (1993)CrossRef
107.
go back to reference Fan, J., Freer, R.: The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors. J. Appl. Phys. 77, 4795–4800 (1995)CrossRef Fan, J., Freer, R.: The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors. J. Appl. Phys. 77, 4795–4800 (1995)CrossRef
108.
go back to reference Gupta, T.K., Miller, A.C.: Improved stability of the ZnO varistor via donor and acceptor doping at the grain boundary. J. Mater. Res. 3, 745–754 (1988)CrossRef Gupta, T.K., Miller, A.C.: Improved stability of the ZnO varistor via donor and acceptor doping at the grain boundary. J. Mater. Res. 3, 745–754 (1988)CrossRef
109.
go back to reference Daneu, N., Recnik, A., Bernik, S., Kolar, D.: Microstructural development in SnO2-Doped ZnO Bi2O3 ceramics. J. Am. Ceram. Soc. 83, 3165–3171 (2000)CrossRef Daneu, N., Recnik, A., Bernik, S., Kolar, D.: Microstructural development in SnO2-Doped ZnO Bi2O3 ceramics. J. Am. Ceram. Soc. 83, 3165–3171 (2000)CrossRef
110.
go back to reference Santos, P.A., Maruchin, S., Menegoto, G.F., et al.: The sintering time influence on the electrical and microstructural characteristics of SnO2 varistor. Mater. Lett. 60, 1554–1557 (2006)CrossRef Santos, P.A., Maruchin, S., Menegoto, G.F., et al.: The sintering time influence on the electrical and microstructural characteristics of SnO2 varistor. Mater. Lett. 60, 1554–1557 (2006)CrossRef
111.
go back to reference Silva, I.P., Simoes, A.Z., Filho, F.M., et al.: Dependence of La2O3 content on the nonlinear electrical behaviour of ZnO, CoO and Ta2O5 doped SnO2 varistors. Mater. Lett. 61, 2121–2125 (2007)CrossRef Silva, I.P., Simoes, A.Z., Filho, F.M., et al.: Dependence of La2O3 content on the nonlinear electrical behaviour of ZnO, CoO and Ta2O5 doped SnO2 varistors. Mater. Lett. 61, 2121–2125 (2007)CrossRef
112.
go back to reference Houabes, M., Metz, R.: Rare earth oxides effects on both the threshold voltage and energy absorption capability of ZnO varistors. Ceram. Int. 33, 1191–1197 (2006)CrossRef Houabes, M., Metz, R.: Rare earth oxides effects on both the threshold voltage and energy absorption capability of ZnO varistors. Ceram. Int. 33, 1191–1197 (2006)CrossRef
113.
go back to reference Wang, J.-F., Chen, H.-C., Su, W.-B., et al.: Effects of Sr on the microstructure and electrical properties of (Co, Ta)-doped SnO2 varistors. J. Alloys Comp. 413, 35–39 (2006)CrossRef Wang, J.-F., Chen, H.-C., Su, W.-B., et al.: Effects of Sr on the microstructure and electrical properties of (Co, Ta)-doped SnO2 varistors. J. Alloys Comp. 413, 35–39 (2006)CrossRef
114.
go back to reference Margionte, M.A.L., Simoes, A.Z., Riccardi, C.S., et al.: Nonlinear characteristics of Cr2O3, WO3, ZnO and CoO doped SnO2 varistors. Mater. Lett. 60, 142–146 (2006)CrossRef Margionte, M.A.L., Simoes, A.Z., Riccardi, C.S., et al.: Nonlinear characteristics of Cr2O3, WO3, ZnO and CoO doped SnO2 varistors. Mater. Lett. 60, 142–146 (2006)CrossRef
115.
go back to reference Yang, H.G., Zeng, H.C.: Synthetic architectures of TiO2/H2Ti5O11 H2O, ZnO/H2Ti5O11 H2O, ZnO/TiO2/H2Ti5O11 H2O and ZnO/TiO2 nanocomposites. J. Am. Chem. Soc. 127, 270–278 (2005)CrossRef Yang, H.G., Zeng, H.C.: Synthetic architectures of TiO2/H2Ti5O11 H2O, ZnO/H2Ti5O11 H2O, ZnO/TiO2/H2Ti5O11 H2O and ZnO/TiO2 nanocomposites. J. Am. Chem. Soc. 127, 270–278 (2005)CrossRef
Metadata
Title
Sol-Gel Materials for Varistor Devices
Authors
S. Anas
K. V. Mahesh
M. Jeen Maria
S. Ananthakumar
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-50144-4_2

Premium Partners