Skip to main content
Top
Published in: Foundations of Computational Mathematics 1/2023

13-10-2021

Analysis and Convergence of Hermite Subdivision Schemes

Author: Bin Han

Published in: Foundations of Computational Mathematics | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Hermite interpolation property is desired in applied and computational mathematics. Hermite and vector subdivision schemes are of interest in CAGD for generating subdivision curves and in computational mathematics for building Hermite wavelets to numerically solve partial differential equations. In contrast to well-studied scalar subdivision schemes, Hermite and vector subdivision schemes employ matrix-valued masks and vector input data, which make their analysis much more complicated and difficult than their scalar counterparts. Under the spectral condition or the spectral chain, analysis of Hermite subdivision schemes through factorization of matrix-valued masks has been extensively studied in the literature and sufficient conditions have been given for the convergence of Hermite subdivision schemes through the contractivity of their derived subdivision schemes. We contribute to the study of Hermite subdivision schemes from a different perspective by investigating vector subdivision operators acting on vector polynomials and by establishing connections among Hermite subdivision schemes, vector cascade algorithms, and refinable vector functions. This approach allows us to characterize and construct all masks for Hermite subdivision schemes, to explain the spectral condition and spectral chain in the literature, to characterize convergence and smoothness of Hermite subdivision schemes using vector cascade algorithms, and to provide simple factorizations of Hermite masks through the normal form of matrix-valued masks such that the Hermite subdivision scheme is convergent if and only if its derived subdivision scheme is contractive. We also constructively prove that there always exist arbitrarily smooth convergent Hermite subdivision schemes, whose basis vector functions are splines and have linearly independent shifts. Several examples of Hermite subdivision schemes with short support and high smoothness are presented to illustrate the results in this paper.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Memoirs of the AMS. Am. Math. Soc. 93 (453) (1991). A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Memoirs of the AMS. Am. Math. Soc. 93 (453) (1991).
2.
go back to reference M. Charina, C. Conti, T. Mejstrik, and J.-L. Merrien, Joint spectral radius and ternary hermite subdivision. Adv. Comput. Math. 47 (2021), no. 2, Paper No. 25. M. Charina, C. Conti, T. Mejstrik, and J.-L. Merrien, Joint spectral radius and ternary hermite subdivision. Adv. Comput. Math. 47 (2021), no. 2, Paper No. 25.
3.
go back to reference M. Charina, C. Conti, and T. Sauer, Regularity of multivariate vector subdivision schemes. Numer. Algorithms 39 (2005), 97–113.MathSciNetCrossRefMATH M. Charina, C. Conti, and T. Sauer, Regularity of multivariate vector subdivision schemes. Numer. Algorithms 39 (2005), 97–113.MathSciNetCrossRefMATH
4.
go back to reference C. Conti and S. Hüning, An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349 (2019), 302–315.MathSciNetCrossRefMATH C. Conti and S. Hüning, An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349 (2019), 302–315.MathSciNetCrossRefMATH
5.
go back to reference C. Conti, M. Cotronei, and T. Sauer, Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42 (2016), 1055–1079.MathSciNetCrossRefMATH C. Conti, M. Cotronei, and T. Sauer, Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42 (2016), 1055–1079.MathSciNetCrossRefMATH
6.
go back to reference M. Cotronei, C. Moosmüller, T. Sauer, and N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and wavelets. Constr. Approx. 50 (2019), 341–366.MathSciNetCrossRefMATH M. Cotronei, C. Moosmüller, T. Sauer, and N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and wavelets. Constr. Approx. 50 (2019), 341–366.MathSciNetCrossRefMATH
8.
9.
go back to reference S. Dubuc, B. Han, J.-L. Merrien, and Q. Mo, Dyadic \(C^2\) Hermite interpolation on a square mesh. Comput. Aided Geom. Design 22 (2005), 727–752.MathSciNetCrossRefMATH S. Dubuc, B. Han, J.-L. Merrien, and Q. Mo, Dyadic \(C^2\) Hermite interpolation on a square mesh. Comput. Aided Geom. Design 22 (2005), 727–752.MathSciNetCrossRefMATH
10.
go back to reference N. Dyn and D. Levin, Analysis of Hermite-type subdivision schemes. Approximation theory VIII, Vol. 2, 117–124, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995. N. Dyn and D. Levin, Analysis of Hermite-type subdivision schemes. Approximation theory VIII, Vol. 2, 117–124, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995.
11.
go back to reference N. Dyn and D. Levin, Analysis of Hermite-interpolatory subdivision schemes. Spline functions and the theory of wavelets, 105–113, CRM Proc. Lecture Notes, 18, Amer. Math. Soc., Providence, RI, 1999. N. Dyn and D. Levin, Analysis of Hermite-interpolatory subdivision schemes. Spline functions and the theory of wavelets, 105–113, CRM Proc. Lecture Notes, 18, Amer. Math. Soc., Providence, RI, 1999.
13.
go back to reference B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110 (2001), 18–53.MathSciNetCrossRefMATH B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110 (2001), 18–53.MathSciNetCrossRefMATH
14.
15.
go back to reference B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl., 24 (2003), 693–714MathSciNetCrossRefMATH B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl., 24 (2003), 693–714MathSciNetCrossRefMATH
16.
go back to reference B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24 (2006), 375–403.MathSciNetCrossRefMATH B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24 (2006), 375–403.MathSciNetCrossRefMATH
17.
go back to reference B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42.MathSciNetCrossRefMATH B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42.MathSciNetCrossRefMATH
18.
go back to reference B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets, Math. Comp., 79 (2010), 917–951.MathSciNetCrossRefMATH B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets, Math. Comp., 79 (2010), 917–951.MathSciNetCrossRefMATH
20.
21.
go back to reference B. Han, Framelets and wavelets: Algorithms, analysis, and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2017. xxxiii + 724 pp. B. Han, Framelets and wavelets: Algorithms, analysis, and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2017. xxxiii + 724 pp.
22.
go back to reference B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29 (1998), 1177–1199.MathSciNetCrossRefMATH B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29 (1998), 1177–1199.MathSciNetCrossRefMATH
23.
go back to reference B. Han and R. Lu, Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet transforms. Appl. Comput. Harmon. Anal. 51 (2021), 295–332.MathSciNetCrossRefMATH B. Han and R. Lu, Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet transforms. Appl. Comput. Harmon. Anal. 51 (2021), 295–332.MathSciNetCrossRefMATH
25.
go back to reference B. Han and Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6 (2007), 689–718.MathSciNetCrossRefMATH B. Han and Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6 (2007), 689–718.MathSciNetCrossRefMATH
26.
go back to reference B. Han and T. P.-Y. Yu, Face-based Hermite subdivision schemes. J. Concr. Appl. Math. 4 (2006), 435–450.MathSciNetMATH B. Han and T. P.-Y. Yu, Face-based Hermite subdivision schemes. J. Concr. Appl. Math. 4 (2006), 435–450.MathSciNetMATH
27.
28.
go back to reference B. Han, M. L. Overton, and T. Yu, Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comp., 25 (2003), 643–656.MathSciNetCrossRefMATH B. Han, M. L. Overton, and T. Yu, Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comp., 25 (2003), 643–656.MathSciNetCrossRefMATH
30.
go back to reference B. Han and X. Zhuang, Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107 (2009), 143–171.MathSciNetCrossRefMATH B. Han and X. Zhuang, Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107 (2009), 143–171.MathSciNetCrossRefMATH
31.
go back to reference S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order. Math. Comput. Simulation 176 (2020), 195–205.MathSciNetCrossRefMATH S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order. Math. Comput. Simulation 176 (2020), 195–205.MathSciNetCrossRefMATH
32.
go back to reference B. Jeong and J. Yoon, Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349 (2019), 452–469.MathSciNetCrossRefMATH B. Jeong and J. Yoon, Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349 (2019), 452–469.MathSciNetCrossRefMATH
33.
go back to reference B. Jeong and J. Yoon, A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials. Appl. Math. Comput. 366 (2020), 124763.MathSciNetMATH B. Jeong and J. Yoon, A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials. Appl. Math. Comput. 366 (2020), 124763.MathSciNetMATH
34.
go back to reference R.-Q. Jia and Q.-T. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24 (2003), 1071–1109.MathSciNetCrossRefMATH R.-Q. Jia and Q.-T. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24 (2003), 1071–1109.MathSciNetCrossRefMATH
36.
go back to reference J.-L. Merrien and T. Sauer, A generalized Taylor factorization for Hermite subdivision schemes. J. Comput. Appl. Math. 236 (2011), 565–574.MathSciNetCrossRefMATH J.-L. Merrien and T. Sauer, A generalized Taylor factorization for Hermite subdivision schemes. J. Comput. Appl. Math. 236 (2011), 565–574.MathSciNetCrossRefMATH
38.
go back to reference J.-L. Merrien and T. Sauer, Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142 (2019), 167–203.MathSciNetCrossRefMATH J.-L. Merrien and T. Sauer, Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142 (2019), 167–203.MathSciNetCrossRefMATH
40.
go back to reference C. Moosmüller and N. Dyn, Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39 (2019), 579–606.MathSciNetCrossRefMATH C. Moosmüller and N. Dyn, Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39 (2019), 579–606.MathSciNetCrossRefMATH
41.
go back to reference C. Moosmüller, S. Hüning, and C. Conti, Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA J. Numer. Anal., to appear. C. Moosmüller, S. Hüning, and C. Conti, Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA J. Numer. Anal., to appear.
Metadata
Title
Analysis and Convergence of Hermite Subdivision Schemes
Author
Bin Han
Publication date
13-10-2021
Publisher
Springer US
Published in
Foundations of Computational Mathematics / Issue 1/2023
Print ISSN: 1615-3375
Electronic ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-021-09543-7

Other articles of this Issue 1/2023

Foundations of Computational Mathematics 1/2023 Go to the issue

Premium Partner