Skip to main content
Erschienen in: Foundations of Computational Mathematics 1/2023

13.10.2021

Analysis and Convergence of Hermite Subdivision Schemes

verfasst von: Bin Han

Erschienen in: Foundations of Computational Mathematics | Ausgabe 1/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hermite interpolation property is desired in applied and computational mathematics. Hermite and vector subdivision schemes are of interest in CAGD for generating subdivision curves and in computational mathematics for building Hermite wavelets to numerically solve partial differential equations. In contrast to well-studied scalar subdivision schemes, Hermite and vector subdivision schemes employ matrix-valued masks and vector input data, which make their analysis much more complicated and difficult than their scalar counterparts. Under the spectral condition or the spectral chain, analysis of Hermite subdivision schemes through factorization of matrix-valued masks has been extensively studied in the literature and sufficient conditions have been given for the convergence of Hermite subdivision schemes through the contractivity of their derived subdivision schemes. We contribute to the study of Hermite subdivision schemes from a different perspective by investigating vector subdivision operators acting on vector polynomials and by establishing connections among Hermite subdivision schemes, vector cascade algorithms, and refinable vector functions. This approach allows us to characterize and construct all masks for Hermite subdivision schemes, to explain the spectral condition and spectral chain in the literature, to characterize convergence and smoothness of Hermite subdivision schemes using vector cascade algorithms, and to provide simple factorizations of Hermite masks through the normal form of matrix-valued masks such that the Hermite subdivision scheme is convergent if and only if its derived subdivision scheme is contractive. We also constructively prove that there always exist arbitrarily smooth convergent Hermite subdivision schemes, whose basis vector functions are splines and have linearly independent shifts. Several examples of Hermite subdivision schemes with short support and high smoothness are presented to illustrate the results in this paper.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Memoirs of the AMS. Am. Math. Soc. 93 (453) (1991). A. S. Cavaretta, W. Dahmen, and C. A. Micchelli, Stationary subdivision, Memoirs of the AMS. Am. Math. Soc. 93 (453) (1991).
2.
Zurück zum Zitat M. Charina, C. Conti, T. Mejstrik, and J.-L. Merrien, Joint spectral radius and ternary hermite subdivision. Adv. Comput. Math. 47 (2021), no. 2, Paper No. 25. M. Charina, C. Conti, T. Mejstrik, and J.-L. Merrien, Joint spectral radius and ternary hermite subdivision. Adv. Comput. Math. 47 (2021), no. 2, Paper No. 25.
3.
Zurück zum Zitat M. Charina, C. Conti, and T. Sauer, Regularity of multivariate vector subdivision schemes. Numer. Algorithms 39 (2005), 97–113.MathSciNetCrossRefMATH M. Charina, C. Conti, and T. Sauer, Regularity of multivariate vector subdivision schemes. Numer. Algorithms 39 (2005), 97–113.MathSciNetCrossRefMATH
4.
Zurück zum Zitat C. Conti and S. Hüning, An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349 (2019), 302–315.MathSciNetCrossRefMATH C. Conti and S. Hüning, An algebraic approach to polynomial reproduction of Hermite subdivision schemes. J. Comput. Appl. Math. 349 (2019), 302–315.MathSciNetCrossRefMATH
5.
Zurück zum Zitat C. Conti, M. Cotronei, and T. Sauer, Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42 (2016), 1055–1079.MathSciNetCrossRefMATH C. Conti, M. Cotronei, and T. Sauer, Factorization of Hermite subdivision operators preserving exponentials and polynomials. Adv. Comput. Math. 42 (2016), 1055–1079.MathSciNetCrossRefMATH
6.
Zurück zum Zitat M. Cotronei, C. Moosmüller, T. Sauer, and N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and wavelets. Constr. Approx. 50 (2019), 341–366.MathSciNetCrossRefMATH M. Cotronei, C. Moosmüller, T. Sauer, and N. Sissouno, Level-dependent interpolatory Hermite subdivision schemes and wavelets. Constr. Approx. 50 (2019), 341–366.MathSciNetCrossRefMATH
7.
8.
9.
Zurück zum Zitat S. Dubuc, B. Han, J.-L. Merrien, and Q. Mo, Dyadic \(C^2\) Hermite interpolation on a square mesh. Comput. Aided Geom. Design 22 (2005), 727–752.MathSciNetCrossRefMATH S. Dubuc, B. Han, J.-L. Merrien, and Q. Mo, Dyadic \(C^2\) Hermite interpolation on a square mesh. Comput. Aided Geom. Design 22 (2005), 727–752.MathSciNetCrossRefMATH
10.
Zurück zum Zitat N. Dyn and D. Levin, Analysis of Hermite-type subdivision schemes. Approximation theory VIII, Vol. 2, 117–124, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995. N. Dyn and D. Levin, Analysis of Hermite-type subdivision schemes. Approximation theory VIII, Vol. 2, 117–124, Ser. Approx. Decompos., 6, World Sci. Publ., River Edge, NJ, 1995.
11.
Zurück zum Zitat N. Dyn and D. Levin, Analysis of Hermite-interpolatory subdivision schemes. Spline functions and the theory of wavelets, 105–113, CRM Proc. Lecture Notes, 18, Amer. Math. Soc., Providence, RI, 1999. N. Dyn and D. Levin, Analysis of Hermite-interpolatory subdivision schemes. Spline functions and the theory of wavelets, 105–113, CRM Proc. Lecture Notes, 18, Amer. Math. Soc., Providence, RI, 1999.
13.
Zurück zum Zitat B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110 (2001), 18–53.MathSciNetCrossRefMATH B. Han, Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets. J. Approx. Theory 110 (2001), 18–53.MathSciNetCrossRefMATH
14.
Zurück zum Zitat B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124 (2003), 44–88.MathSciNetCrossRefMATH B. Han, Vector cascade algorithms and refinable function vectors in Sobolev spaces. J. Approx. Theory 124 (2003), 44–88.MathSciNetCrossRefMATH
15.
Zurück zum Zitat B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl., 24 (2003), 693–714MathSciNetCrossRefMATH B. Han, Computing the smoothness exponent of a symmetric multivariate refinable function. SIAM J. Matrix Anal. Appl., 24 (2003), 693–714MathSciNetCrossRefMATH
16.
Zurück zum Zitat B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24 (2006), 375–403.MathSciNetCrossRefMATH B. Han, Solutions in Sobolev spaces of vector refinement equations with a general dilation matrix. Adv. Comput. Math. 24 (2006), 375–403.MathSciNetCrossRefMATH
17.
Zurück zum Zitat B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42.MathSciNetCrossRefMATH B. Han, Dual multiwavelet frames with high balancing order and compact fast frame transform. Appl. Comput. Harmon. Anal. 26 (2009), 14–42.MathSciNetCrossRefMATH
18.
Zurück zum Zitat B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets, Math. Comp., 79 (2010), 917–951.MathSciNetCrossRefMATH B. Han, The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets, Math. Comp., 79 (2010), 917–951.MathSciNetCrossRefMATH
20.
Zurück zum Zitat B. Han, On linear independence of integer shifts of compactly supported distributions. J. Approx. Theory 201 (2016), 1–6.MathSciNetCrossRefMATH B. Han, On linear independence of integer shifts of compactly supported distributions. J. Approx. Theory 201 (2016), 1–6.MathSciNetCrossRefMATH
21.
Zurück zum Zitat B. Han, Framelets and wavelets: Algorithms, analysis, and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2017. xxxiii + 724 pp. B. Han, Framelets and wavelets: Algorithms, analysis, and applications. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Cham, 2017. xxxiii + 724 pp.
22.
Zurück zum Zitat B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29 (1998), 1177–1199.MathSciNetCrossRefMATH B. Han and R.-Q. Jia, Multivariate refinement equations and convergence of subdivision schemes. SIAM J. Math. Anal. 29 (1998), 1177–1199.MathSciNetCrossRefMATH
23.
Zurück zum Zitat B. Han and R. Lu, Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet transforms. Appl. Comput. Harmon. Anal. 51 (2021), 295–332.MathSciNetCrossRefMATH B. Han and R. Lu, Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet transforms. Appl. Comput. Harmon. Anal. 51 (2021), 295–332.MathSciNetCrossRefMATH
24.
25.
Zurück zum Zitat B. Han and Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6 (2007), 689–718.MathSciNetCrossRefMATH B. Han and Q. Mo, Analysis of optimal bivariate symmetric refinable Hermite interpolants. Commun. Pure Appl. Anal. 6 (2007), 689–718.MathSciNetCrossRefMATH
26.
Zurück zum Zitat B. Han and T. P.-Y. Yu, Face-based Hermite subdivision schemes. J. Concr. Appl. Math. 4 (2006), 435–450.MathSciNetMATH B. Han and T. P.-Y. Yu, Face-based Hermite subdivision schemes. J. Concr. Appl. Math. 4 (2006), 435–450.MathSciNetMATH
27.
28.
Zurück zum Zitat B. Han, M. L. Overton, and T. Yu, Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comp., 25 (2003), 643–656.MathSciNetCrossRefMATH B. Han, M. L. Overton, and T. Yu, Design of Hermite subdivision schemes aided by spectral radius optimization. SIAM J. Sci. Comp., 25 (2003), 643–656.MathSciNetCrossRefMATH
29.
30.
Zurück zum Zitat B. Han and X. Zhuang, Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107 (2009), 143–171.MathSciNetCrossRefMATH B. Han and X. Zhuang, Analysis and construction of multivariate interpolating refinable function vectors. Acta Appl. Math. 107 (2009), 143–171.MathSciNetCrossRefMATH
31.
Zurück zum Zitat S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order. Math. Comput. Simulation 176 (2020), 195–205.MathSciNetCrossRefMATH S. Hüning, Polynomial reproduction of Hermite subdivision schemes of any order. Math. Comput. Simulation 176 (2020), 195–205.MathSciNetCrossRefMATH
32.
Zurück zum Zitat B. Jeong and J. Yoon, Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349 (2019), 452–469.MathSciNetCrossRefMATH B. Jeong and J. Yoon, Analysis of non-stationary Hermite subdivision schemes reproducing exponential polynomials. J. Comput. Appl. Math. 349 (2019), 452–469.MathSciNetCrossRefMATH
33.
Zurück zum Zitat B. Jeong and J. Yoon, A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials. Appl. Math. Comput. 366 (2020), 124763.MathSciNetMATH B. Jeong and J. Yoon, A new family of non-stationary hermite subdivision schemes reproducing exponential polynomials. Appl. Math. Comput. 366 (2020), 124763.MathSciNetMATH
34.
Zurück zum Zitat R.-Q. Jia and Q.-T. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24 (2003), 1071–1109.MathSciNetCrossRefMATH R.-Q. Jia and Q.-T. Jiang, Spectral analysis of the transition operator and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24 (2003), 1071–1109.MathSciNetCrossRefMATH
35.
36.
Zurück zum Zitat J.-L. Merrien and T. Sauer, A generalized Taylor factorization for Hermite subdivision schemes. J. Comput. Appl. Math. 236 (2011), 565–574.MathSciNetCrossRefMATH J.-L. Merrien and T. Sauer, A generalized Taylor factorization for Hermite subdivision schemes. J. Comput. Appl. Math. 236 (2011), 565–574.MathSciNetCrossRefMATH
37.
38.
Zurück zum Zitat J.-L. Merrien and T. Sauer, Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142 (2019), 167–203.MathSciNetCrossRefMATH J.-L. Merrien and T. Sauer, Generalized Taylor operators and polynomial chains for Hermite subdivision schemes. Numer. Math. 142 (2019), 167–203.MathSciNetCrossRefMATH
40.
Zurück zum Zitat C. Moosmüller and N. Dyn, Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39 (2019), 579–606.MathSciNetCrossRefMATH C. Moosmüller and N. Dyn, Increasing the smoothness of vector and Hermite subdivision schemes. IMA J. Numer. Anal. 39 (2019), 579–606.MathSciNetCrossRefMATH
41.
Zurück zum Zitat C. Moosmüller, S. Hüning, and C. Conti, Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA J. Numer. Anal., to appear. C. Moosmüller, S. Hüning, and C. Conti, Stirling numbers and Gregory coefficients for the factorization of Hermite subdivision operators. IMA J. Numer. Anal., to appear.
Metadaten
Titel
Analysis and Convergence of Hermite Subdivision Schemes
verfasst von
Bin Han
Publikationsdatum
13.10.2021
Verlag
Springer US
Erschienen in
Foundations of Computational Mathematics / Ausgabe 1/2023
Print ISSN: 1615-3375
Elektronische ISSN: 1615-3383
DOI
https://doi.org/10.1007/s10208-021-09543-7

Weitere Artikel der Ausgabe 1/2023

Foundations of Computational Mathematics 1/2023 Zur Ausgabe

Premium Partner